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ABSTRACT

The discontinuous Galerkin methods are locally conservative, high-order accurate, robust methods
which can easily handle elements of arbitrary shapes, irregular meshes with hanging nodes, and
polynomial approximations of different degrees in different elements. These properties, which render
them ideal for hp-adaptivity in domains of complex geometry, have brought them to the main stream of
computational fluid dynamics. We study the properties of the DG methods as applied to a wide variety
of problems arising in fluid dynamics with a special emphasis on linear, symmetric positive hyperbolic
systems, the Euler equations of gas dynamics, purely elliptic problems, and the incompressible and
compressible Navier-Stokes equations. In each instance, we discuss the main properties of the methods,
display the mechanisms that make them work so well, and present numerical experiments showing
their performance.
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1. Introduction

This is a short, introductory essay to the study of the so-called Discontinuous Galerkin (DG)
methods for fluid dynamics. The DG methods provide discontinuous approximations defined
by using a Galerkin method element by element, the connection between the values of the
approximation in different elements being established by the so-called numerical traces. Since
the methods use discontinuous approximations, they can easily handle elements of arbitrary
shapes, irregular meshes with hanging nodes, and polynomial approximations of different
degrees in different elements. The methods are thus ideally suited for hp-adaptivity in domains
of complex geometry. Moreover, since they use a Galerkin method on each element, they can
easily achieve high-order accuracy when the exact solution is smooth and high resolution when
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

it is not. Finally, when their numerical traces are properly chosen, they achieve a high degree of
locality (and hence a high degree of parallelizability for time-dependent hyperbolic problems),
they become locally conservative (a highly valued property in computational fluid dynamics),
easy to solve and, last but not least, very stable even in the presence of discontinuities or
strong gradients.

The first DG method was introduced by Reed and Hill (1973 for numerically solving the
neutron transport equation, a linear hyperbolic equation for a scalar-valued unknown. Lesaint
and Raviart (1974 recognized the relevance of the method and carried out its first theoretical
analysis. Since then, the method has been slowly evolving as it was applied to different
problems. In the 1990s, the method was successfully extended to nonlinear time-dependent
hyperbolic systems by Cockburn and Shu (see the review by Cockburn and Shu (2001) and
since then the method has known a remarkably vigorous development, as suggested in Figure
1, where we display the number of papers (in the American Mathematical Society database
MathSciNet) whose title contains the words discontinuous Galerkin. In this paper, we describe
the method, discuss its main properties, uncover the mechanisms that make it work so well,
and show its performance in a variety of problems in fluid dynamics.

Figure 1. Cumulative number of papers, in MathSciNet, containing the words discontinuous Galerkin
in their title.

The paper is organized as follows. Since the main properties of all DG methods are already
displayed in the very first DG method, we begin, in Section 2, by considering the original
DG method for the neutron transport equation. In Section 3, we extend the DG method
to linear, symmetric positive hyperbolic systems, and, In Section 4, to nonlinear hyperbolic
conservation laws. This key extension, which takes advantage of the relation between the so-
called finite-volume monotone schemes and the DG methods, is what made these methods
relevant in computational fluid dynamics. In Section 5, we consider DG methods for steady-
state diffusion problems. We argue that the DG methods can be considered to lie in between
the well known continuous Galerkin and the mixed methods for second-order elliptic problems.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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DISCONTINUOUS GALERKIN METHODS FOR COMPUTATIONAL FLUID DYNAMICS 3

In Section 6, we extend theses methods to the Stokes equations of incompressible flow. In
Section 7, we consider convection-dominated flows including convection-diffusion, the Oseen
and the compressible Navier-Stokes equations. In these last three sections, special attention
will be devoted to the so-called hybridizable DG (HDG) methods, which constitute a subclass
of DG methods amenable to static condensation. Finally, we end in Section 8 with some
concluding remarks and bibliographical notes.

2. The neutron transport equation

In this section, we consider the original DG method for numerically solving the neutron
transport equation. It is in this framework that the idea of combining a Galerkin method on
each element together with a suitably defined numerical trace linking the different elements
was introduced. We discuss the properties of local conservativity and local solvability of the
method and show that the jumps of the approximate solution across interelement boundaries
enhance the stability of the method. We also show that these jumps are related to the local
residuals in a linear fashion. This establishes that the original DG method is what we nowadays
call a residual-stabilized method.

2.1. The original DG method

We begin by considering the original DG method of Reed and Hill (1973 which was devised
to numerically solve the neutron transport equation,

σ u+∇ · (au) = f in Ω

u = uD on ∂Ω−

where σ is a positive number, a a constant vector and ∂Ω− the inflow boundary of Ω, that is,

∂Ω− = {x ∈ ∂Ω : a · n(x) < 0}
Here n(x) is the outward unit normal at x.

2.2. Definition

To define the method, we proceed as follows. First, we find the weak formulation that the
Galerkin procedure will be based upon. For each element K of the mesh Th of the domain Ω,
we multiply the neutron transport equation by a test function v and integrate over K to get

σ (u, v)K − (u,a · ∇v)K + 〈a · nK u, v〉∂K = (f, v)K (1)

where nK is the outward unit normal to K,

(u, v)K =

∫

K

u vdx, and 〈w, v〉∂K =

∫

∂K

w vds
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4 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

This is the weak formulation with which we define the approximation to u, uh. Thus, for each
element K ∈ Th, we take uh|K in the space of polynomials of degree k, Pk(K), and define it
by requiring that

σ (uh, v)K − (uh,a · ∇v)K + 〈a · nK ûh, v〉∂K = (f, v)K (2)

for all v ∈ Pk(K). Here, the numerical trace ûh is given by

ûh(x) =

{
uD(x) for x ∈ ∂Ω−

limǫ↓0 uh(x− ǫa) otherwise.
(3)

Note that if the vector a is perpendicular to the normal nK , the above numerical trace is not
well defined. However, the numerical trace of the flux a · nK ûh, usually called the numerical
flux , is actually well defined and is called the upwinding numerical flux. This completes the
definition of the DG method.

2.3. The numerical trace of the flux

Now, let us discuss some of the properties of this method. Let us begin by noting that the
numerical trace of the flux, a ·nK ûh, is a linear function of the trace of uh which is consistent
and single valued. The numerical trace is easy of evaluate and its form ensures a great degree
of locality of the method. The fact that it is consistent, namely, that

a · nK û = a · nK u,

where u is the exact solution, ensures that we are approximating the correct exact solution.
The fact that it is single valued implies that the DG method is a locally conservative method.
Indeed, since on any face F := ∂K1 ∩ ∂K2, we have

a · nK2
ûh + a · nK1

ûh = 0,

for any set S which is the union of elements K ∈ Th, we have

σ

∫

S

uhdx+

∫

∂S

a · nS ûhds =

∫

S

fdx

This equation is obtained by simply taking v := 1 in the weak formulation (2) for each K in
S and then adding the equations.

2.4. A local energy identity and the elementwise solvability of the method

Next, note that, thanks for the definition of the numerical trace of the flux, the method satisfies
a local energy identity we deduce next. Setting v := uh in the weak formulation (2), we get
that

σ ‖uh‖2K + 1
2 〈1,a · nK û 2

h 〉∂K +ΘK(uh) = (f, uh)K

where ‖ζ‖K := (ζ, ζ)
1/2
K and

ΘK(uh) := − 1
2 〈1,a · nK (ûh − uh)

2〉∂K = 1
2 〈1, |a · nK | (ûh − uh)

2〉∂K−
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DISCONTINUOUS GALERKIN METHODS FOR COMPUTATIONAL FLUID DYNAMICS 5

by the definition of the numerical trace of the flux. Completing squares, we get that

1
2σ ‖uh‖2K + 1

2σ‖uh − f/σ‖2K + 1
2 〈1,a · nK û 2

h 〉∂K +ΘK(uh) =
1
2σ‖f‖

2
K ,

and finally,

1
2σ ‖uh‖2K + 1

2σ‖uh−f/σ‖2K + 1
2 〈1, |a ·nK | û 2

h 〉∂K+
+ΘK(uh) =

1
2σ‖f‖

2
K + 1

2 〈1, |a ·nK | û 2
h 〉∂K−

,

where ∂K+ = ∂K\∂K−.

We claim that an immediate consequence of this local energy identity is the fact that the
approximate solution can be efficiently computed in an element-by-element fashion. Indeed,
from the weak formulation (2) and the definition of the numerical trace (3), we have

(σ uh, v)K − (uh,a · ∇v)K + 〈a · nK uh, v〉∂K+
= (f, v)K − 〈a · nK ûh, v〉∂K−

,

for all v ∈ Pk(K), since, on ∂K+, a ·nK ûh = a ·nK uh|K . Since the above formulation defines
a square system, the existence and uniqueness of the approximation uh on K holds if and only
if, when we set the data f |K and ûh|∂K−

to zero, the only solution is uh = 0. But, in this case,
the above energy identity reads

σ‖uh‖2K + 1
2 〈1, |a · nK |u 2

h 〉∂K = 0,

which immediately implies that uh = 0.This proves the claim.

In Figure 2.4, the approximate solution uh on the elements of number i can only be computed
after the approximate solution on the neighboring elements of number j < i were obtained. The
approximate solution uh on the elements with equal number can be computed simultaneously.
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Figure 2. Solving the neutron transport equation with the DG method.
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6 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

2.5. A global energy identity and stabilization by the jumps

Another consequence of the above local energy identity is a global energy identity obtained by
simply adding the identities for all the elements K ∈ Th, that is,

1
2σ ‖uh‖2Ω + 1

2σ‖σ uh − f‖2Ω + 1
2 〈1, |a · n|u 2

h 〉∂Ω+
+Θh(uh) =

1
2σ‖f‖

2
Ω + 1

2 〈1, |a · n|u 2
D〉∂Ω−

,

where

Θh(uh) :=
1

2

∑

K∈Th

ΘK(uh) =
1

2

∑

K∈Th

〈1, |a · nK | (ûh − uh)
2〉∂K−

.

Of course, ‖ζ‖2Ω :=
∑

K∈Th
‖ζ‖2K .

Note that the left-hand side of the above identity can be considered to be a discrete energy.
As a consequence, the term Θh(uh) can be interpreted as the energy associated to the inter-
element jumps. This is why we say that the method is stabilized by the jumps. Moreover, we
see that the energy of the inter-element jumps is uniformly bounded regardless of the mesh
Th and of the approximating spaces Pk(K),K ∈ Th. Thus, the method exerts an automatic
control on the size of the jumps.

2.6. Control of the residuals by the inter-element jumps

Next, we argue that the size of the jumps is related to the ability of the method to solve the
partial differential equation inside the element. To see this, let us first note that the size of
the local residuals ,

RK := σ uh +∇ · (auh)− f and r∂K := a · nK (ûh − uh),

control the quality of the approximation since only when they are zero, we have that uh

coincides with the exact solution u. Now, let us show that these two residuals are related by
the very definition of the method. Indeed, a simple integration by parts in the weak formulation
(2), reveals that

(RK , v)K = 〈r∂K , v〉∂K ,

for all v ∈ Pk(K). Taking v := PkRK , where Pk denotes the L2(K)−projection into Pk(K),
we immediately obtain that

‖PkRK‖K ≤ C h
−1/2
K ‖r∂K‖∂K

This implies that only the size of the jumps a·nK (ûh−uh), and the size of f−Pkf , control the
quality of the approximation. Thus, if the size of the jumps is very small, then the projection
of the residual PkRK is also very small. If f |K is very smooth, then the residual RK is also
very small. As a consequence, the quality of the approximation on K is very good.

On the other hand, if the quality of the approximation in the element K is very poor, as we
expect it would be, for example, in the presence of discontinuities, then the projection of the
residual PkRK , and hence the jumps a ·nK (ûh − uh) across the inflow boundary of K, would
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DISCONTINUOUS GALERKIN METHODS FOR COMPUTATIONAL FLUID DYNAMICS 7

be huge. Fortunately, this faux pas of the method is automatically compensated by an increase
in the dissipative term ΘK(uh), see the above energy identities, which in practice results in
the damping of the typical spurious oscillations that appear around the discontinuities.

2.7. Convergence properties

For very smooth solutions and general meshes, we have the following simple a priori error
estimate.

Theorem 1. (Error estimates for the original DG method) Consider the original DG method
for the neutron transport equation given by (2) and (3). Then, for regular meshes Th made of
arbitrarily shaped elements, we have that

σ1/2‖u− uh ‖Ω + 〈1, |a · n|(u− uh)
2〉∂Ω+ +Θ

1/2
h (uh) ≤ C|u |Hk+1(Th) h

k+1/2

where C is independent of u and h is the maximum of the diameters hK of the elements
K ∈ Th.

This elementary result was improved by Johnson and Pitkäranta (1986 who proved, among
other things, the same order of convergence of k+1/2 for ‖u−uh ‖Ω independently of σ. This
order of convergence was shown to be sharp by Peterson (1991 and then by Richter (2008.
However, in some instances, the order of convergence of k + 1 can be obtained. This happens
for Cartesian meshes and tensor- product polynomials of degree k (see Lesaint and Raviart
(1974), for some structured meshes of triangles and spaces of polynomials of degree k (see
Richter (1988), and for some unstructured meshes which are, roughly speaking, aligned with
the transport velocity a (see Cockburn et al. (2008a; Cockburn et al. (2010a.

An early a posteriori error estimate and superconvergence results can be found in Adjerid and
Massey (2002. For finer results, see the work by Adjerid and Mechai (2014 and the references
therein.

For early work on adaptivity on linear, steady state hyperbolic problems, see the paper by
Bey (1994, Bey and Oden (1996, and then to the papers Houston et al. (2000; Houston et al.
(2001; Houston et al. (2002, Houston and Süli (2001, and Süli and Houston (2002.

2.8. Devising DG methods for general partial differential equations

Let us end by pointing out that, by rewriting a partial differential equation as first-order
system, the same approach used to define the original DG method can be readily applied.
As we are going to see, all the resulting DG methods share with the original DG method
several important, distinctive properties. First is the use of approximations of the variables
inside the elements as well as on their boundary. Since no interelement continuity is required
for the approximations, the DG methods can handle arbitrarily-shaped elements and general
basis functions. Because of this, the DG methods are ideally suited for hp-adaptivity and for
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8 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

capturing special features of the exact solution by using special basis functions. Second is the
enforcement of the equations by means of an elementwise Galerkin method. This results in
locally conservative numerical methods and automatically implies the control of the residuals
inside the elements by the residuals at the boundaries (which depend on the jumps of the
variables). Finally, by suitably defining their numerical traces, a stabilization mechanism is
introduced which depends on the interelement jumps of the variables. It renders the methods
robust and can even improve their convergence properties.

3. Linear, symmetric positive hyperbolic systems

In this section, we exploit the hyperbolic nature of the neutron transport problem to extend the
original DG method to linear, symmetric positive hyperbolic systems like the wave equation
or the Maxwell equations. To show how to do that, we consider the model problem

ut +

N∑

i=1

Ai uxi
+Bu = f in Ω× (0, T )

(An −M) (u− uD) = 0 on ∂Ω× [0, T ]

u(t = 0) = u0 on Ω

where u is an Rm-valued function and Ai is a symmetric matrix for i = 1, . . . , N . Here An

denotes the matrix
∑N

i=1 ni A
i where n = (n1, . . . , nN ) is the unit outward normal at the

boundary of Ω. Friedrichs (1958 has shown that this problem has a unique solution under
some smoothness conditions on the data, under the positivity property

B +B∗ −
N∑

i=1

Ai
xi

≥ βI, β > 0

and under the following properties on the boundary condition matrix M :

M +M∗ ≥ 0

ker(An −M) + ker(An +M) = Rm on ∂Ω× [0, T ].

We can easily verify that the neutron transport equation is a particular case of the above
problem. Indeed, in that case, we have that m = 1 and so the matrices Ai are real numbers;
moreover, we have that a = (A1, . . . , AN ) and that An = a ·n. The boundary condition matrix
M is simply |a · n |, so that the boundary condition reads

(a · n− |a · n |)(u− uD) = 0 on ∂Ω× [0, T ]

that is,

u = uD on ∂Ω− × [0, T ]
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DISCONTINUOUS GALERKIN METHODS FOR COMPUTATIONAL FLUID DYNAMICS 9

3.1. Definition

To define a DG method, we proceed as follows. First, we obtain a mesh Th of the space-time
domain Ω×(0, T ). Then, for each element K ∈ Th, we take uh|K to be in the finite dimensional
space V (K) and define it by requiring that

−(uh, vt)K −
N∑

i=1

(Ai uh, vxi
)K + 〈ÂnK

uh, v〉∂K + ((B −
N∑

i=1

Ai
xi
)uh, v)K = (f, v)K

for all v ∈ V (K). Here we have taken AnK
= An + nt Id, where nK = (n, nt). Next, let us

define the numerical flux ÂnK
u.

On the boundary of the space-time domain, we take

ÂnK
uh =





u0 on Ω× {t = 0}
uh on Ω× {t = T}
1
2 An(uh + uD)

+ 1
2 M(uh − uD) on ∂Ω× (0, T )

and on the interelement boundaries,

ÂnK
uh = AnK

{uh}+ 1
2 M [[uh]]nK

where {uh} = 1
2 (u

−
h + u+

h ), [[uh]]nK
= u−

h − u+
h and u±

h (x) = limǫ↓0 uh(x± ǫnK).

It only remains to define the matrices M. The two main choices are M = |AnK
|, which gives

rise to the so-called upwinding numerical flux, and M = ̺(AnK
) Id, where ̺(E) is the spectral

radius of the matrix E, which gives rise to the so-called Lax-Friedrichs numerical flux. This
completes the definition of the DG method.

3.2. The numerical trace of the flux

Note how the numerical trace of the flux, ÂnK
uh, is a linear function of the traces of uh which

is consistent and single valued. As in the case of neutron transport, the form the numerical
race of the flux is easy to evaluate and ensures a high degree of locality of the method. The
property of consistency ensures that we are approximating the correct exact solution. It is
satisfied if

ÂnK
u = AnK

u

where u is the exact solution. Since [[u]]nK
= 0, we do have that the numerical flux is consistent

in the interelement boundaries. It is trivial to see it is consistent on Ω × {t = 0} and on
Ω× {t = T}. It remains to see what happens on ∂Ω× (0, T ). But there we have

ÂnK
u = 1

2 An(u+ uD) + 1
2 M(u− uD)

= Anu+ 1
2 (M −An)(u− uD) = Anu
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10 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

since the exact solution satisfies the boundary condition (M−An)(u−uD) = 0. The numerical
trace of the flux is thus consistent.

Finally, the fact that it is single valued, that is , that on the face F := ∂K1 ∩ ∂K2,

ÂnK1
uh + ÂnK2

uh = 0

ensures the highly valued property of local conservatively which states that for any set S,
which is the union of elements K ∈ Th, we have

∫

S

(B −
N∑

i=1

Ai
xi
)uhdx+

∫

∂S

ÂnS
uhds =

∫

S

f dx.

t
n +1

t
n −1

t
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Figure 3. Space-time meshes for the DG method. On each time slab Ω× (tn, tn+1), the resolution can
be globally implicit (a) or implicit only on each element (b).
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DISCONTINUOUS GALERKIN METHODS FOR COMPUTATIONAL FLUID DYNAMICS 11

3.3. A local energy identity and the elementwise solvability of the method

To obtain the local energy identity, we consider the case in which M = M = |AnK
| in order to

emphasize the closeness of this case with that of the neutron transport problem. In this case,
the resulting numerical flux is called the unwinding flux:

ÂnK
uh = AnK

{uh}+ 1
2 |AnK

| [[uh]]nK
= A

+
nK

u−
h + A

−
nK

u+
h ,

where A−
nK

:= (AnK
− |AnK

|)/2 and A+
nK

:= (AnK
+ |AnK

|)/2. We can now proceed exactly as
in the neutron transport problem to obtain the following local energy identity:

1
2‖uh‖2K,Σ+ 1

2‖Σuh− f‖2K,Σ−1 + 1
2 〈A

+
nK

u−
h ,u

−
h 〉∂K +ΘK(uh) =

1
2‖f‖

2
K,Σ−1 − 1

2 〈A
−
nK

u+
h ,u

+
h 〉∂K ,

where

ΘK(uh) := − 1
2 〈A

−
nK

[[uh]], [[uh]]〉∂K .

Here, we are using the notation ‖z‖2K,C := (Cz, z)K and Σ := 1
2 (B +B∗ −∑N

i=1 Ai
xi
).

This identity implies that the approximate solution on each element is well defined provided
appropriate data is provided. Indeed, on the element K ∈ Th, we have that uh is the element
of V (K) that solves

−(uh, vt)K−
N∑

i=1

(Ai uh, vxi
)K+〈A+

nK
u−
h , v〉∂K+((B−

N∑

i=1

Ai
xi
)uh, v)K = (f, v)K−〈A−

nK
u+
h , v〉∂K

for all v ∈ V (K). Since this defines a square system, to prove the existence and uniqueness of
uh, it is enough to set the data A−

nK
u+
h and f to zero and show that the only possible solution

is the trivial one. But in this case, the above local energy identity gives

‖uh‖2K,Σ + 1
2 〈|AnK

|u−
h ,u

−
h 〉∂K = 0,

which immediately implies that uh = 0 in K.

This means that approximate solution uh|K can be obtained on the elementK once the trace
u+
h |∂K such that A−

nK
= 0 is available. In spite of the possibility of solving in an elementwise

manner, sometimes it is possible to solve only on the time slab Ω × [tn, tn+1], as indicated
by Johnson et al. (1984. This gives rise to a globally implicit method; see Figure 3(a). This
difficulty can be avoided if suitably defined meshes are used together with the upwinding
numerical flux as shown by Lowrie et al. (1995, Lowrie (1996, and Lowrie et al. (1998 in
the frame of nonlinear hyperbolic systems, and later by Yin et al. (2000 in the framework of
elastodynamics, and by Falk and Richter (1999 in the framework of linear symmetric positive
hyperbolic systems. See Figure 3(b).
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

3.4. A global energy identity and stabilization by the jumps

As in the case of the neutron transport problem, we can easily get the following global energy
identity:

1
2‖uh‖2ΩT ,Σ + 1

2‖Σuh − f‖2ΩT ,Σ−1 + 1
2 〈A

+
n u

−
h ,u

−
h 〉∂ΩT

+Θh(uh)

= 1
2‖f‖

2
ΩT ,Σ−1 − 1

2 〈A
−
n uD,uD〉∂Ω×[0,T ] +

1
2 〈u0,u0〉Ω,

where ΩT := Ω× (0, T ) and

Θh(uh) :=
1

2

∑

K∈Th

ΘK(uh) = −1

2
〈A−

n [[uh]], [[uh]]〉∂ΩT
+

1

2

∑

F∈Fi

〈|AnF
| [[uh]], [[uh]]〉F .

Here, nF is any unit vector normal to the face F and F i
h is the collection of all interior

faces of the mesh Th. Again, we see that the method is stabilized by the jumps and that the
energy of the inter-element jumps is uniformly bounded regardless of the mesh Th and of the
approximating spaces V (K),K ∈ Th.

3.5. Control of the residuals by the inter-element jumps

Now, consider the residuals

RK := (uh)t +

N∑

i=1

Ai (uh)xi
+Buh − f and r∂K := ÂnK

uh − AnK
uh = −A

−
nK

[[uh]].

A simple integration by parts in the weak formulation defining the scheme gives

(RK , v)K = 〈r∂K , v〉∂K ,

for all v ∈ V (K), and this implies that

‖PV RK‖K ≤ C h
−1/2
K ‖r∂K‖∂K

where PV is the L2(K)-projection into the space V (K). If we assume, for simplicity, that the
matrices Ai, i = 1, · · · , N and B are constant, this implies that only the size of the jumps
−A−

nK
[[uh]], and the size of f − PV f control the quality of the approximation.

3.6. Convergence properties

For very smooth solutions and general meshes, we have the following simple a priori error
estimate.

Theorem 2. (Error estimates for the DG method) Consider the DG method for which each
component of the space V (K) contains the space of polynomials Pk(K). Then, for regular
meshes Th made of arbitrarily shaped elements, we have that

‖u− uh ‖ΩT ,Σ + 〈A+
n
(u− uh), (u− uh)〉1/2∂Ω +Θ

1/2
h (uh) ≤ C|u |Hk+1(Th) h

k+1/2
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where C is independent of u and h is the maximum of the diameters hK of the elements
K ∈ Th.

See the a priori error estimates in Falk and Richter (1999. Asymptotically exact
discontinuous Galerkin error estimates for linear symmetric hyperbolic systems have been
obtained by Adjerid and Weinhart (2014; see also Adjerid and Weinhart (2011.

3.7. Enhanced accuracy by local postprocessing

The method of lines for these linear systems has been studied by Cockburn et al. (2003 where it
was shown that, if uniform meshes are used, a local postprocessing of the approximate solution
of the DG method is of order 2 k + 1 when polynomials of degree k are used.

This remarkable technique, which can be used for all other DG methods, was introduced
by Bramble and Schatz (1977 for finite element solutions to elliptic equations. It was explored
from a Fourier perspective, and for derivative filtering, by Thomée (1977. Its application to
discontinuous Galerkin solutions to linear hyperbolic equations was then done by Cockburn
et al. (2003. Applications to the approximation of derivatives were carried by Ryan and
Cockburn (2009 and more recently by Li et al. (2016. For applications to convection-diffusion
equations see Ji et al. (2012, to variable-coefficient equations see Mirzaee et al. (2011, and
to nonlinear hyperbolic equations with smooth solutions see Ji et al. (2013. This filtering
technique, later called Smoothness-Increasing Accuracy-Conserving (SIAC) filtering, requires
translation-invariant meshes, used originally a symmetric convolution kernel, and cannot be
applied up to the boundary. Extensions to smoothly varying mesh sizes-uniform cartesian
meshes were carried out by Curtis et al. (0708, and to unstructured triangular meshes by
Mirzaee et al. (2013, (applications to structured triangular meshes were done by Mirzaee et al.
(2011 and to structured tetrahedral meshes by Mirzaee et al. (2014. The development of one-
sided convolution kernels which can be applied up to the boundary, was carried out in the
series of papers by Ryan and Shu (2003; van Slingerland et al. (2011; Ryan et al. (2015; see
also the L∞−error estimates by Ji et al. (2014. The application of SIAC filtering to streamline
visualization and isosurface extraction was done by Walfisch et al. (2009.

Let us illustrate how powerful is this filtering on the model problem,

ut + ux = 0, in (0, 2π)× (0, T )

u(x, 0) = sin(x) x ∈ (0, 2π) (4)

with periodic boundary conditions. In Table 1, we see that the order of convergence of both
the L2 and L∞ errors for P k elements is of (k + 1) before postprocessing and of at least
(2k + 1) after postprocessing, for k = 1, 2, 3, 4. In Figure 4, we see the absolute errors before
and after postprocessing for P 2. The postprocessing of the approximate solution is obtained
by convolution with a kernel whose support is the union of a number of elements, which only
depends on k; for details, see Cockburn et al. (2003.
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Figure 4. The absolute value of the errors for P 2 with N = 10, 20, 40, 40, 80 and 160 elements.
Before postprocessing (a) and after postprocessing (b). (From Cockburn B, Luskin M, Shu C-W and
Süli E. Enhanced accuracy by post-processing for finite element methods for hyperbolic equations.

Math. Comput. 2003; 72:577-606.)
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4. Nonlinear Hyperbolic Problems

In this section, we consider DG methods for nonlinear hyperbolic problems. We begin by
showing that to ensure convergence towards the physically relevant solution, usually called
the entropy solution, the DG methods need to use a numerical flux based on a suitable
approximate Riemann solver and that they must use either a shock-capturing term or a slope
limiter . We show that the shock-capturing DG methods are strongly related to stabilized
methods like the streamline diffusion method, and that slope-limiter DG methods can be
considered to be an extension of finite volume methods. We then show computational results
for some shock-capturing DG methods and describe and analyze the so-called Runge-Kutta
DG (RKDG) method, a slope-limiter DG method. We show how the different ingredients of the
method, namely, the DG space discretization, a special Runge-Kutta time discretization, and a
generalized slope limiter, are put together to ensure its stability. Several numerical experiments
showing the performance of the RKDG methods are given. Particular attention is devoted to
the Euler equations of gas dynamics. Finally, we discuss, and illustrate, a remarkable technique
for enforcing a range-invariance property of the RKDG approximations.

4.1. The main difficulty: the loss of well-posedness

Devising numerical methods for nonlinear hyperbolic problems is dramatically different from
devising methods for linear symmetric hyperbolic problems. This is due to the fact that whereas
linear, symmetric hyperbolic problems are well posed, nonlinear hyperbolic problems are not.

This difficulty was uncovered first in the framework of the Euler equations of gas dynamics;
indeed, this equation has several nonphysical weak solutions. This happens because the
Euler equations of gas dynamics are obtained from the compressible Navier-Stokes by simply
dropping from the equations, the terms modeling viscosity and heat transfer effects. As a
consequence, the information concerning the second law of thermodynamics is completely lost
and discontinuous solutions, which violate such a law suddenly appear. To devise numerical
schemes that are guaranteed to converge to the entropy solution and not to any other weak
solution constitutes the main difficulty of devising numerical methods for nonlinear hyperbolic
problems.

This difficulty is present even in the simplest hyperbolic problem, namely, the scalar
hyperbolic conservation law

ut + (f(u))x = 0 in (0, 1)× (0, T )

u(t = 0) = u0 on (0, 1)

with periodic boundary conditions. To illustrate this phenomenon, consider the well-known
Engquist-Osher and Lax-Wendroff schemes and let us apply them to the above equation for
f(u) = u2/2 and u0(x) = 1 on (0.4, 0.6) and u0(x) = 0 otherwise. In the Figure 5, we see that
the approximation given by the Engquist-Osher scheme converges to the entropy solution,
whereas that given by the Lax-Wendroff scheme does not. The Lax-Wendroff scheme lacks a
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Table 1. The effect of post-processing the approximate solution. (From Cockburn B, Luskin M,
Shu C-W and Süli E. Enhanced accuracy by postprocessing for finite element methods for hyperbolic

equations. Math. Comput. 2003; 72:577-606.)

Mesh Before postprocessing After postprocessing
L2 error Order L∞ error Order L2 error Order L∞ error Order

P 1

10 3.29E-02 - 5.81E-02 - 3.01E-02 - 4.22E-02 -
20 5.63E-03 2.55 1.06E-02 2.45 3.84E-03 2.97 5.44E-03 2.96
40 1.16E-03 2.28 2.89E-03 1.88 4.79E-04 3.00 6.78E-04 3.01
80 2.72E-04 2.09 8.08E-04 1.84 5.97E-05 3.00 8.45E-05 3.00
160 6.68E-05 2.03 2.13E-04 1.93 7.45E-06 3.00 1.05E-05 3.00
320 1.66E-05 2.01 5.45E-05 1.96 9.30E-07 3.00 1.32E-06 3.00

P 2

10 8.63E-04 - 2.86E-03 - 2.52E-04 - 3.57E-04 -
20 1.07E-04 3.01 3.69E-04 2.95 5.96E-06 5.40 8.41E-06 5.41
40 1.34E-05 3.00 4.63E-05 3.00 1.53E-07 5.29 2.16E-07 5.28
80 1.67E-06 3.00 5.78E-06 3.00 4.22E-09 5.18 5.97E-09 5.18
160 2.09E-07 3.00 7.23E-07 3.00 1.27E-10 5.06 1.80E-10 5.06

P 3

10 3.30E-05 - 9.59E-05 - 1.64E-05 - 2.31E-05 -
20 2.06E-06 4.00 6.07E-06 3.98 7.07E-08 7.85 1.00E-07 7.85
40 1.29E-07 4.00 3.80E-07 4.00 2.91E-10 7.92 4.15E-10 7.91
50 5.29E-08 4.00 1.56E-07 4.00 5.03E-11 7.87 7.24E-11 7.83

P 4

10 1.02E-06 - 2.30E-06 - 1.98E-06 - 2.81E-06 -
20 3.21E-08 5.00 7.30E-08 4.98 2.20E-09 9.82 3.11E-09 9.82
30 4.23E-09 5.00 9.66E-09 4.99 4.34E-11 9.68 6.66E-11 9.48

mechanism that ensures its convergence towards the entropy solution and, as a consequence,
can converge to a weak solution, which is not the entropy solution.

4.2. Tools for capturing the entropy solution: heuristics

The DG methods try to ensure convergence towards the entropy solution by using the so-
called Riemann solvers and either a shock-capturing term or a slope limiter . To describe the
heuristics behind their construction, we consider the parabolic problem

ut + (f(u))x = ν uxx in (0, 1)× (0, T )

u(t = 0) = u0 on (0, 1)
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Figure 5. The entropy solution, u, and its approximation uh at time T = 1/2: Engquist-Osher
scheme (a) and Lax-Wendroff scheme (b). (From Cockburn B. Continuous dependence and error

estimation for viscosity methods. Acta Numer. 2003a; 12:127-180.)

since it is known that as the viscosity coefficient ν goes to zero, the solution of the above
problem converges to the entropy solution of our scalar hyperbolic conservation law.

Given this property, our strategy is to use the weak formulation of the parabolic problem to
see what the tools are that should be used to devise DG methods that converge to the entropy
solution. Thus, multiplying the parabolic equation by a test function ϕ, and integrating over
the space-time element K, we get

∫

∂K

(f(u)− ν ux, u) · (nx, nt)ϕds

−
∫

K

(f(u)− ν ux, u) · (ϕx, ϕt)dxdt = 0
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Now, if we set FnK
(u) = (f(u)− ν ux, u) · (nx, nt), on ∂K, we end up with

∫

∂K

FnK
(u)ϕds−

∫

K

(f(u), u) · (ϕx, ϕt)

+

∫

K

ν ux ϕxdxdt = 0

Finally, noting that we have

ν ux(x, t) =

∫ x

x(t)

R(u)(y, t)dy

where R(u) = ut + (f(u))x and x(t) is such that
ux(x(t), t) = 0 (such a point always exists because we
have periodic boundary conditions), this suggests the so-called shock-capturing DG methods:

∫

∂K

F̂nK
(uh)ϕds−

∫

K

(f(uh), uh) · (ϕx, ϕt)

+

∫

K

ν̂ (uh)xϕxdxdt = 0

where F̂nK
(uh) is the approximate Riemann solver and the last term is the shock-capturing

term.

The approximate Riemann solver is nothing but a numerical trace for the function FnK
(u);

it only depends on the two traces of the function u, that is, F̂nK
(uh) = ĝ(u−

h , u
+
h ). The main

examples are the following:

(i) The Godunov flux:

ĝG(a, b) =

{
mina≤u≤b g(u), if a ≤ b
maxb≤u≤a g(u), otherwise

(ii) The Engquist-Osher flux:

ĝEO(a, b) =

∫ b

0

min(g′(s), 0)ds

+

∫ a

0

max(g′(s), 0)ds+ g(0)

(iii) The Lax-Friedrichs flux:

ĝLF(a, b) = 1
2 [g(a) + g(b)− C(b− a)]

C = max
inf u0(x)≤s≤supu0(x)

|g′(s)|

The shock-capturing term has the same structure as the corresponding term for the parabolic
equation and typically, has a viscosity coefficient ν̂ that depends on the residual as follows:

ν̂ = δα
|R(uh) |

| (uh)x |+ ǫ
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where the auxiliary parameter δ is usually taken to be of the order of the diameter of K and
α is a parameter usually bigger than one and smaller than two. The purpose of the small
number ǫ is to prevent a division by zero when (uh)x = 0. The shock-capturing DG methods
considered by Jaffré et al. (1995 and by Cockburn and Gremaud (1996 for the scalar hyperbolic
conservation law in several space dimensions are of this form.

The DG methods that do not have a shock-capturing term must have a slope limiter in order
to ensure that the information about the entropy solution is incorporated into the scheme. In
fact, as we argue next, the slope limiters and the shock-capturing terms have exactly the same
origin. The DG methods with a slope limiter are obtained as follows. Instead of keeping the
shock-capturing term in a single equation, that term is split-off in a way typical of operator
splitting techniques. Take K = I× (tn, tn+1). To march from time tn to tn+1, we first compute

u
n+1/2
h from un

h by using the scheme
∫

∂K

(f̂h, ûh) · (nx, nt)ϕds

−
∫

K

(f(uh), uh) · (ϕx, ϕt)dxdt = 0

for some numerical flux (f̂h, ûh) · (nx, nt), and then, compute un+1
h from u

n+1/2
h by using

∫

I

(un+1
h − u

n+1/2
h )ϕdx

− (tn+1 − tn)

∫

I

ν (u
n+1/2
h )x ϕxdx = 0

We thus see that the function un+1
h captures the information contained in the shock-capturing

term. The link between this second step and the so-called slope limiters can be easily
established if we realize that, if we write,

un+1
h = ΛΠhu

n+1/2
h

then, the operator ΛΠh is actually a (generalized) slope limiter. For details, see the work by
Cockburn (2001.

Let us illustrate this fact on a simple case. Consider the piecewise linear function vh and set
uh = ΛΠ(vh), that is, uh is the piecewise linear function defined by

∫

I

uh ϕdx =

∫

I

vh ϕdx−
∫

I

slc (vh)x ϕxdx

where slc := (tn+1 − tn) ν, for all linear functions ϕ. If we write

vh(x) = vj + (x− xj) vx,j

on each interval Ij , and take

slc =

{
0 if vx,j = 0
h2
j

12

[
1−m

(
1, 2

hj

vj−vj−1

vx,j
, 2
hj

vj+1−vj

vx,j

)]
otherwise
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Figure 6. The ΛΠO
h limiter: an example. Displayed are the local means of uh ( ), the linear function

uh in the element of the middle before limiting (- - - -) and the resulting function after limiting ( ).

where the minmod function m is defined by

m (a1, a2, a3) =

{
s min1≤n≤3 | an | if s = sign(a1)

= sign(a2) = sign(a3)
0 otherwise

we obtain that

uj = vj , and ux,j = m(vx,j , vj − vj−1, vj+1 − vj)

We thus see that the mean of uh coincides with that of vh. Moreover, since, by definition of
the function m, we have

|ux,j | ≤ | vx,j |
it is reasonable to call the operator ΛΠ a slope limiter. This slope limiter, which we denote
by ΛΠO

h , is due to Osher (1984; see Figure 6. It is less restrictive than the limiters originally
considered by van Leer (1974 and by van Leer (1979.

Next, we show computational results for some shock-capturing DG methods and then study
the main example of DG methods using slope limiters, namely, the Runge-Kutta discontinuous
Galerkin (RKDG) methods.

4.3. Shock-capturing DG methods

There are only two theoretical results concerning shock-capturing methods, and those concern
the scalar hyperbolic conservation law. The first is by Jaffré et al. (1995, who proved
convergence to the entropy solution. The second is by Cockburn and Gremaud (1996, who
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obtained a priori error estimates showing that this convergence takes place at rate of at least
h1/4 in the L∞(0, T ;L1(RN ))-norm, as well as a posteriori error estimates which can be used
for adaptivity purposes.

Space-time DG methods for nonlinear hyperbolic conservation laws were considered by
Lowrie et al. (1995 (Lowrie et al. (1995, Lowrie et al. (1998) and Lowrie (1996. DG shock-
capturing methods have been considered by Hartmann and Houston (2002a (Hartmann and
Houston (2002a,b) for adaptively solving for values of linear functionals of solutions of steady
state nonlinear hyperbolic conservation laws with remarkable success; see also Süli and Houston
(2002. More recently, shock-capturing DG methods with PDE-based artificial viscosity were
considered by Barter and Darmofal (2010. See also the shock-capturing DG method by Huerta
et al. (2012.

To give an example, let us consider the Burger’s equation

ut +
1
2

(
u2
)
x
= 0, in Ω× (0, T )

where Ω = (0, 3) and T = 2, subject to the initial condition

u(x, 0) =





2 sin2(πx), 0 ≤ x ≤ 1
sin2(πx), 1 ≤ x ≤ 2
0, 2 ≤ x ≤ 3

and boundary condition u(0, t) = 0, for t ∈ [0, T ]; see Figure 7. The exact solution develops
two shocks, which eventually merge. The functional of interest J(·) is the value of the solution
before these two shocks collapse into each other. We thus take,

J(u) = u(2.3, 1.5) = 0.664442403975254670

see Figure 7.

In Figure 8, we compare the performance of the h- and hp-mesh refinement algorithms
for this problem. Again, we observe exponential convergence of the error in the computed
functional using hp-refinement; on the linear-log scale, the convergence line is straight. On
the final mesh the true error between J(u) and J(uDG) using hp-refinement is almost five
orders of magnitude smaller than the corresponding quantity when h-refinement is employed
alone. Furthermore, in Figure 8, we observe that the hp-refinement algorithm also outperforms
the h-refinement strategy, when comparing the error in the computed target functional with
respect to the computational cost. Indeed, Figure 9 clearly shows that for the hp-DGFEM
the cost per degree of freedom when hp-refinement is employed is comparable to that of using
h-refinement.

Finally, in Figure 10, we show the primal mesh after 11 adaptive hp-mesh refinements.
Here, we see that the h-mesh has been refined in the region upstream of the point of interest,
thereby isolating the smooth region of u from the two interacting shock waves; this renders
the subsequent p-refinement in this region much more effective.

Now, let us consider the problem of computing the drag coefficient, J(u), of the NACA0012
airfoil for two flows. The first is subsonic and is obtained by imposing on the outer boundary
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Figure 7. Burgers’ problem initial condition (a) and isolines for the exact solution (b). (From Süli E
and Houston P. Adaptive finite element approximation of hyperbolic problems. In Error Estimation
and Adaptive Discretization Methods in Computational Fluid Dynamics, Volume 25 of Lecture Notes
in Computational Science and Engineering, Barth T and Deconink H (eds). Springer-Verlag: Berlin,
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a Mach 0.5 flow at a zero angle of attack, and a far-field density ̺ = 1 and pressure p = 1. In
this case, no shock-capturing term is used since the solution is very smooth. The second flow is
obtained by imposing this time a Mach 0.8 flow and an angle of attack α = 1.25◦. Since in this
case, the solution presents a shock, the shock-capturing term is turned on. In Figure 11, we see
how easily the DG method handles meshes with hanging nodes and with different polynomials
degrees in different elements. In Figure 12, we also see that hp-adaptivity is more efficient than
h-adaptivity even in the presence of shocks.

In van der Vegt and van der Ven (2002b (see also the paper by van der Ven and van der
Vegt (2002) have considered shock-capturing DG methods for the time-dependent compressible
Euler equations of gas dynamics. Accordingly, they have used space-time elements, which
allow them to easily deal with moving bodies. Their shock-capturing term uses both the local
residuals as well as the jumps, which, as we have seen, are also related to the local residuals; for
details, see van der Vegt and van der Ven (2002b. They have shown that this method can be
efficiently used with mesh adaptation. As an example, we show in Figure 13, the approximation
of the method with mesh adaptation on a time-dependent Mach 0.8 flow around an oscillating
NACA 0012 airfoil. The pitching angle is between −0.5◦ and 4.5◦, and the circular frequency
is ω = π/10. A more spectacular example is shown in Figures 14, 15, and 16, where their DG
method is applied to helicopter flight.
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Figure 10. Burgers’ equation. h- and hp-meshes after 11 refinements, with 999 elements and 26 020
degrees of freedom; here, |J(u) − J(uDG)| = 1.010 × 10−7. (From Süli E and Houston P. Error
Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, Volume 25 of
Lecture Notes in Computational Science and Engineering, Adaptive finite element approximation of
hyperbolic problems, Barth T and Deconink H (eds). 269-344, 2002, Copyright Springer-Verlag Gmbh

& Co.KG, Berlin.)
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Figure 11. Flow around a NACA0012 airfoil sub-sonic (a) and supersonic (b). The actual hp-meshes
after 10 refinements. For the subsonic flow, the hp-mesh has 325 elements, 45 008 degrees of freedom,
and produces an error |J(u) − J(uh)| = 3.756 × 10−7. For the transonic flow, it has 783 elements,
69 956 degrees of freedom, and produces an error of |J(u)−J(uDG)| = 1.311×10−4. (From Süli E and
Houston P. Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics,
Volume 25 of Lecture Notes in Computational Science and Engineering, Adaptive finite element
approximation of hyperbolic problems, Barth T and Deconink H (eds). 269-344, 2002, Copyright

Springer-Verlag Gmbh & Co.KG, Berlin.)
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Figure 12. Flow around a NACA0012 airfoil sub-sonic (a) and supersonic (b). Comparison
between h- and hp-adaptive mesh refinement. (From Süli E and Houston P. Error Estimation and
Adaptive Discretization Methods in Computational Fluid Dynamics, Volume 25 of Lecture Notes in
Computational Science and Engineering, Adaptive finite element approximation of hyperbolic problems,
Barth T and Deconink H (eds). 269-344, 2002, Copyright Springer-Verlag Gmbh & Co.KG, Berlin.)

4.4. The RKDG methods

There are two main differences between the RKDG methods and the shock-capturing DG
methods. The first is that the RKDG methods use an explicit Runge-Kutta scheme to evolve
the approximate solution in time; this renders them very easy to implement and much more
parallelizable. The second is that whereas the shock-capturing DG methods converge to the
entropy solution, thanks to the inclusion in their weak formulation of the shock-capturing
terms, the RKDG achieve this by using a slope limiters. Although these two techniques have
the very same origin, as we showed in the previous section, the use of the slope limiters results
in sharper approximations to the shocks and contact discontinuities.

In this section, we consider the Runge-Kutta discontinuous Galerkin (RKDG) methods for
nonlinear hyperbolic systems in divergence form,

ut +

N∑

i=1

(fi(u))xi
= 0

To define the RKDG methods, we proceed in three steps. In the first, the conservation law is
discretized in space by using a discontinuous Galerkin (DG) method. After discretization,
the system of ordinary differential equations (d/dt)uh = L(uh) is obtained. Since the
approximation is discontinuous, the so-called mass matrix is block diagonal and hence, easily
invertible. In the second step, an explicit strong stability preserving (SSP) Runge-Kutta
method is used to march in time. The distinctive feature of the strong stability preserving
Runge-Kutta (SSP-RK) methods is that their stability follows from the stability of the forward
Euler step. Finally, in the third step, a generalized slope limiter ΛΠh is introduced in order to
enforce the above-mentioned stability property of the Euler forward step.
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Figure 13. Adapted mesh around oscillating NACA 0012 airfoil, contours of density, and pressure
coefficient Cp on the airfoil surface for α = 0.23◦ (pitching upward) and α = 4.0◦ (pitching downward)
(M∞ = 0.8, ω = π/10, α = 2◦ ± 2.5◦). (From van der Vegt JJW and van der Ven H. Space-time
discontinuous Galerkin finite element method with dynamic mesh motion for inviscid compressible

flows: I. General formulation. J. Comput. Phys. 2002b; 182:546-585.)
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(a)

(b)

Figure 14. Four-dimensional simulation of the Operational Loads Survey rotor in forward flight. Grid
cross-section at z = 0 (a) and vorticity levels (b) on adapted mesh at azimuth ψ = 140◦. The tip
vortex of the blade in the upper corner lies above the z = 0 plane. (Mtip = 0.664, advance ratio 0.164,

and thrust 0.0054, flow is coming from the left). (Reproduced from van der Ven H and Boelens OJ.
(2003). Towards affordable CFD simulations of rotors in forward flight, A feasibility study with future
application to vibrational analysis. In 59th American Helicopter Society Forum, Phoenix, Arizona,

NLR-TP-2003-100, 6-8 May, 2003, by permission of American Helicopter Society.)

In what follows, we give a detailed construction of the RKDG method for the model problem
of the scalar conservation law in one space dimension. Then, we briefly discuss the extension
of the method to hyperbolic systems in several space dimensions and present numerical results
showing the performance of the method.

4.5. RKDG methods for scalar hyperbolic nonlinear conservation laws

Let us define the RKDG method for the Cauchy problem for the scalar hyperbolic nonlinear
conservation law

ut + f(u)x = 0, in (0, 1)× (0, T )

u(x, 0) = u0(x), ∀x ∈ (0, 1)
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Figure 15. Adapted Caradonna-Tung rotor mesh (135.280 elements) with periodic plane at z = 0 and
horizontal plane at x = −3.6, showing the refined regions at the vortex locations (a). Vorticity contours
(|ω| = 0.175) for the Caradonna-Tung rotor in hover, collective pitch 12◦, and Mtip = 0.61 (b). (From

Boelens OJ, van der Ven H, Oskam B and Hassan AA. The boundary conforming discontinuous
Galerkin finite element approach for rotorcraft simulations. J. Aircraft 2002; 39:776-785.)

with periodic boundary conditions.

4.5.1. The DG space discretization. Let us triangulate the domain [0, 1) with the partition
Th = { Ij }Ni=1 where Ij = (xj−1/2, xj+1/2). The initial data uh(·, 0)|Ij is simply the L2-
projection of u0|Ij on the space Pk(Ij), that is, it is the only element of Pk(Ij) such that

(uh(·, 0), v)Ij = (u0, v)Ij (5)

for all v ∈ Pk(Ij). For t > 0, we take the approximate solution uh(·, t)Ij to be the element of
Pk(Ij) such that

(uh(·, t))t, v)Ij − (f(uh(·, t)), vx)Ij
+
〈
f̂(uh(·, t))nIj , v

〉
∂Ij

= 0 (6)
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Figure 16. Four-dimensional simulation of the Operational Loads Survey rotor in forward flight. Full
space mesh of adapted mesh in intermediate time level at azimuth ψ = 151.25◦. This intermediate
time level has completely been generated by local mesh refinement in time. (M = 0.664, advance
ratio 0.164, and thrust 0.0054). (Reproduced from van der Ven H and Boelens OJ. Towards affordable
CFD simulations of rotors in forward flight, A feasibility study with future application to vibrational
analysis. In 59th American Helicopter Society Forum, Phoenix, Arizona, NLR-TP-2003-100, 6-8 May,

2003, by permission of American Helicopter Society.)

for all v ∈ Pk(Ij), where f̂(uh) is the numerical flux, which can be taken as indicated in the
previous section. This completes the definition of the DG space discretization.

Note that, thanks to the fact that the approximations are discontinuous, the mass matrix
is block diagonal, each block being of order (k + 1). Moreover, this matrix can be rendered
diagonal if we use (properly mapped) Legendre polynomials. Indeed, if, for x ∈ Ij , we write

uh(x, t) =

k∑

ℓ=0

uℓ
j ϕ

j
ℓ(x), ϕj

ℓ(x) = Pℓ

(
2 (x− xj)

∆xj

)

∆xj = xj+1/2 − xj−1/2

then, the initial condition (5) becomes

uℓ
j(0) =

(2ℓ+ 1)

∆xj

∫

Ij

u0(x)ϕ
j
ℓ(x)dx, ℓ = 0, . . . , k

and the weak formulation (6) takes the following simple form:

d

dt
uℓ
j(t) +

(2ℓ+ 1)

∆xj
(−(f(uh(·, t)) (ϕj

ℓ)x)Ij

+ 〈f̂(uh(·, t)), ϕj
ℓ〉∂Ij ) = 0

for ℓ = 0, . . . , k.
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Note that when f(u) = u, the system of equations for the degrees of freedom are:

d
dtu

ℓ
j(t) +

(2ℓ+1)
∆xj

(∑ℓ−1
m=0(−1)ℓ+mum

j

+
∑k

m=ℓ u
m
j −∑k

m=0(−1)ℓum
j−1

)
= 0

for ℓ = 0, . . . , k. The dissipation of this method was shown to be of order 2k + 2 and the
dispersion of order 2k+3 by Hu and Atkins (2002; Ainsworth (2004; see also Sherwin (2000).
A sharp stability analysis of the method has been carried out by Krivodonova and Qin (2013a;
Krivodonova and Qin (2013b.

Let us verify that the approximate solution remains bounded in the L2-norm. It is easy to
see that the exact solution satisfies

d

dt
‖u(·, t) ‖2L2(0,1) = 0

The approximate solution satisfies, instead

d

dt
‖uh(·, t) ‖2L2(0,1) +Θh(uh(·, t)) = 0

where

Θh(v) =

N∑

i=1

(∫ u+

h

u−

h

(f(s)− f̂(u−
h , u

+
h ))ds

)
(xi+1/2) ≥ 0

For details, see Jiang and Shu (1994; see also Cockburn and Gremaud (1996.

4.5.2. The SSP-RK time discretization. We discretize in time by using the following K-stage
SSP-RK method:

1. Set u
(0)
h = un

h;
2. For i = 1, . . . ,K compute the intermediate functions:

u
(i)
h =

i−1∑

l=0

αil w
il
h , wil

h = u
(l)
h +

βil

αil
∆tnLh(u

(l)
h );

3. Set un+1
h = uK

h .

The method is called SSP if

(i) If βil 6= 0 then αil 6= 0,
(ii) αil ≥ 0,

(iii)
∑i−1

l=0 αil = 1.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Table 2. TVD-RK time discretization parameters.

Order αil βil max{βil/αil}

2 1 1 1

1
2

1
2 0 1

2

1 1

3 3
4

1
4 0 1

4 1

1
3 0 2

3 0 0 2
3

These methods were originally called TVD-RK methods as they preserved the TVD property
of numerical schemes for nonlinear conservation laws. They were introduced by Shu (1988 and
by Shu and Osher (1988. Examples are displayed in Table 2; more can be found in the paper
by Gottlieb and Shu (1998. See also the recent review by Gottlieb et al. (2000.

The main property of these methods is that their stability follows from the stability of the

forward Euler steps wil
h = u

(l)
h + (βil/αil)∆tn. Indeed, assume that each of the Euler steps

satisfy the following stability property

|wil
h | ≤ |u(l)

h |
for some seminorm | · |. Then

|u(i)
h | =

∣∣∣∣∣

i−1∑

l=0

αil w
il
h

∣∣∣∣∣

≤
i−1∑

l=0

αil |wil
h | by the positivity property (ii)

≤
i−1∑

l=0

αil |u(l)
h | by the stability assumption

≤ max
0≤l≤i−1

|u(l)
h | by the consistency property (iii)

It is clear now that the inequality |un
h| ≤ |Phu0|, ∀n ≥ 0, follows from the above inequality by

a simple induction argument.

It is well known that the L2-stability of the method (in the linear case) is necessary in order
to prevent the growth of the round-off errors. Such a stability property is usually achieved
under a condition of the form

| c|∆t

∆x
≤ CFLL2

In Table 3, we display the numbers CFLL2 for a wide variety of time and space discretizations;
they have been obtained by numerically. The symbol ‘⋆’ indicates that the method is unstable
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Table 3. The CFLL2 numbers for polynomials of degree k and RK methods of order ν.

k 0 1 2 3 4 5 6 7 8

ν = 1 1.000 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
ν = 2 1.000 0.333 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
ν = 3 1.256 0.409 0.209 0.130 0.089 0.066 0.051 0.040 0.033
ν = 4 1.392 0.464 0.235 0.145 0.100 0.073 0.056 0.045 0.037
ν = 5 1.608 0.534 0.271 0.167 0.115 0.085 0.065 0.052 0.042
ν = 6 1.776 0.592 0.300 0.185 0.127 0.093 0.072 0.057 0.047
ν = 7 1.977 0.659 0.333 0.206 0.142 0.104 0.080 0.064 0.052
ν = 8 2.156 0.718 0.364 0.225 0.154 0.114 0.087 0.070 0.057
ν = 9 2.350 0.783 0.396 0.245 0.168 0.124 0.095 0.076 0.062
ν = 10 2.534 0.844 0.428 0.264 0.182 0.134 0.103 0.082 0.067
ν = 11 2.725 0.908 0.460 0.284 0.195 0.144 0.111 0.088 0.072
ν = 12 2.911 0.970 0.491 0.303 0.209 0.153 0.118 0.094 0.077

when the ratio ∆t/∆x is held constant. For DG discretizations using polynomials of degree k
and a k + 1 stage RK method of order k + 1 (which give rise to an (k + 1)-th order accurate
method), we can take

CFLL2 =
1

2k + 1

The issue of the stability of the Euler forward step wh = uh + δ∆tn L(uh), where δ is a
positive parameter, is by far more delicate. Indeed, from Table 3, we see that this step is always
unstable in L2. On the other hand, when the method uses piecewise-constant approximations,
then the forward Euler step is nothing but a monotone scheme, which is total variation
diminishing (TVD), that is,

|wh |TV(0,1) ≤ |uh |TV(0,1)

where
|uh |TV(0,1) ≡

∑

1≤j≤N

|uj+1 − uj |

is the total variation of uh. Hence, if we use piecewise polynomial approximations, it is
reasonable to try to see if the Euler forward step under consideration is stable for the following
seminorm

|uh |TVM(0,1) ≡
∑

1≤j≤N

|uj+1 − uj |

where uj is the mean of uh in the interval Ij . Thus, this seminorm is the total variation of the
local means of uh. The following result gives the conditions for the Euler forward step to be
nonexpansive with respect to this seminorm.

Proposition 1. (The sign conditions) We have

|wh |TVM(0,1) ≤ |uh |TVM(0,1)
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provided that

sign (u+
j+1/2 − u+

j−1/2) = sign (u0
j+1 − u0

j )

sign (u−
j+1/2 − u−

j−1/2) = sign (u0
j − u0

j−1)

and provided that

| δ |
(
| f̂(a, ·) |Lip

∆j+1
+

| f̂(·, b) |Lip
∆xj

)
≤ 1

This result states that a discretization in space by the DG method and an SSP-RK time
discretization of the resulting system of ordinary differential equations does not guarantee
a nonexpansive total variation in the local means. Fortunately, the sign conditions can be
enforced by a generalized slope limiter, ΛΠh.

4.5.3. The generalized slope limiter. Next, we construct the operator ΛΠh. To do that, let
us denote by v1h the L2-projection of vh into the space of piecewise-linear functions. We then
define uh = ΛΠh(vh) on the interval Ij , as follows:

(i) Compute

u−
j+1/2 = vj +m ( v−j+1/2 − vj , vj − vj−1, vj+1 − vj)

u+
j−1/2 = vj −m ( vj − v+j−1/2, vj − vj−1, vj+1 − vj)

(ii) If u−
j+1/2 = v−j+1/2 and u+

j−1/2 = v+j−1/2, set uh|Ij = vh|Ij ,
(iii) If not, take uh|Ij equal to ΛΠO

h (v
1
h).

This generalized slope limiter does not degrade the accuracy of the scheme, except at critical
points. In order to avoid that, we replace the minmod function m by the corrected minmod
function mj defined by

mj (a1, a2, a3) =

{
a1 if |a1| ≤ M∆x2

j

m (a1, a2, a3) otherwise

where M is an upper bound of the absolute value of the second-order derivative of the solution
at local extrema.

We have the following result.

Proposition 2. (The TVBM property) Suppose that for j = 1, . . . , N

| δ |
(
| f̂(a, ·) |Lip

∆j+1
+

| f̂(·, b) |Lip
∆xj

)
≤ 1

2

Then, if uh = ΛΠh,Mvh, then

|wh |TVM(0,1) ≤ |uh |TVM(0,1) + CM∆x
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Note that the condition on δ is independent of the form that the approximate solution has in
space.

4.5.4. The nonlinear boundedness of the RKDG method. For this method, we have the
following boundedness result.

Theorem 3. (TVBM-stability of the RKDG method) Let each time step ∆tn satisfy the
following CFL condition:

max
il

∣∣∣∣
βil

αil

∣∣∣∣∆tn

(
| f̂(a, ·) |Lip

∆j+1
+

| f̂(·, b) |Lip

∆xj

)
≤ 1

2
(7)

Then we have

|un
h |TVM(0,1) ≤ |u0 |TV(0,1) + CMQ ∀ n = 0, . . . , L

where L∆x ≤ Q.

Let us emphasize that, as we have seen, the DG space discretization, the RK time
discretization, and the generalized slope limiter are intertwined just in the right way to achieve
the above nonlinear stability result. Thus, although the DG space discretization of this method
is an essential distinctive feature, the other two ingredients are of no less relevance.

Note that the above result holds for any polynomial degree and for any order of accuracy in
time. This shows that this stability result does not impose an accuracy barrier to the method,
as happens with many other methods. The RKDG method can actually achieve high-order
accuracy when the exact solution is smooth because the generalized slope limiter does not
degrade the high-order accuracy of the space and time discretizations. Although there are
no theoretical error estimates that justify this above statement, it is actually supported by
overwhelming practical evidence.

Note also that for the linear case f(u) = c u, the CFL condition (7) becomes

| c |∆t

∆x
≤ CFLTV ≡ 1

2max βil

αil

In general, the restriction of the time step imposed by the TVBM property ismuch weaker than
that required to achieve L2-stability. However, it is the condition for L2 stability that needs to
be respected; otherwise, the round-off errors would get amplified and the high-order accuracy
of the method would degenerate even though the RKDG method remains TVBM-stable.

4.5.5. Generalized slope limiters, discontinuity detection and artificial viscosity techniques.
Although the generalized slope limiter just discussed is fairly simple to implement, how to
estimate the constant M is not easy. The generalized slope limiters by Biswas et al. (1994;
Burbeau et al. (2001, see also Krivodonova (2007, bypass this difficulty but they can still modify
the approximation and degrade the original accuracy of the method. A new approach which
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overcomes this problem, based on seeing the slope limiter as an artificial diffusion operator
(see Cockburn (2001) was proposed in Casoni et al. (2013.

Another approach is the essentially non-oscillatory and weighted essentially non-oscillatory
techniques, see Zhu et al. (2013 and the references therein, which maintain nonlinear
boundedness and maintains the formal order of accuracy of the method. However, they are
very involved, especially for high-degree polynomial approximations and require structured
meshes. On the other hand, the limiter proposed in Zhu et al. (2013 works for unstructured
triangular meshes. To render the generalized slope limiters more efficient, a popular approach
is to apply them only at the elements at which the approximate solution might be capturing a
discontinuity of the exact solution. In this way, a sophisticated generalized slope limiter could
be applied there. See the comparison carried out by Qiu and Shu (2005.

4.5.6. Convergence properties. It is not difficult to use Theorem 3 to conclude, by using a
discrete version of the Ascoli-Arzelá theorem, that from the sequence {uh }∆x>0, it is possible
to extract a subsequence strongly converging in L∞(0, T ; L1(0, 1)) to a limit u⋆. That this limit
is a weak solution of the nonlinear conservation law can be easily shown. However, while there
is ample numerical evidence that suggests that u⋆ is actually the entropy solution, this fact is
still a challenging theoretical open problem.

In the one-dimensional case of the transport equation with an initial condition displaying a
discontinuity, it was shown by Cockburn and Guzmán (2008 that the RKDG with k = 1 and a
second-order time-marching RK method that, at time T , the L2-error is second order in the size
of the mesh, h, outside a region of size O(T 1/2 h1/2 log 1/h) to the right of the discontinuity
and of size O(T 1/3 h2/3 log 1/h) to the left. For any polynomial degree k ≥ 1 and a third-order
time-marching RK method , it was shown by Zhang and Shu (2014 that the L2-error is of
order min{k + 1, 3} in the size of the mesh, outside a region of size O(T 1/2 h1/2 log 1/h) to
both the right and the left of the location of the discontinuity. In both cases, the standard
CFL condition is assumed.

Error estimates for k = 1 elements and a second-order time-marching RK method are
obtained in the L∞(0, T ;L2(Rd))-norm for nonlinear conservation laws in one-space dimension
and for linear conservation laws in multiple space dimensions by Shu and Zhang (2004. The
order of convergence of min{k+1/2, 2} is obtained for general monotone numerical fluxes, and
that of min{k + 1, 2} for upwind numerical fluxes; the minimal CFL condition for stability of
the method. is assumed. The extension to symmetrizable hyperbolic systems was carried out
by Zhang and Shu (2006. Results for the case in which the time-marching RK is of order three
have been done by Zhang and Shu (2010a; Luo et al. (2015; Meng et al. (2016.
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c© John Wiley & Sons, Ltd. ISBN: 0-470-84699-2



DISCONTINUOUS GALERKIN METHODS FOR COMPUTATIONAL FLUID DYNAMICS 37

4.6. RKDG methods for multidimensional hyperbolic systems

The extension of the RKDG methods to the model multidimensional hyperbolic system

ut +
N∑

i=1

(fi(u))xi
= 0

deserves comments on a few key points.

4.6.1. The basis functions. Just as in the one dimensional case, the mass matrix is block-
diagonal; the block associated with the element K is a square matrix of order equal to the
dimension of the local space and hence, can be easily inverted. Moreover, for a variety of
elements and spaces, a basis can be found, which is orthonormal in L2. This is the case, for
example, of rectangles and tensor product polynomials, in which case, the orthonormal basis
is a properly scaled tensor product of Legendre polynomials. For simplices and polynomials
of a given total degree, there is also an orthonormal basis; see the work by Dubiner (1991,
Karniadakis and Sherwin (1999, and Warburton (1998, and the recent implementations by
Aizinger et al. (2000 and Hesthaven and Warburton (2002.

4.6.2. Quadrature rules. In practice, the integrals appearing in the weak formulation need
to be approximated by quadrature rules. It was proven by Cockburn et al. (1990 that

‖Lh(u) +∇ · f(u)‖L∞(K) ≤ C hk+1|f(u)|Wk+2,∞(K)

if the quadrature rules over each of the faces of the border of the element K are exact for
polynomials of degree 2k+1, and if the one over the element is exact for polynomials of degree
2k. The fact that these requirements are also necessary, can be easily numerically verified;
moreover, the method is more sensitive to the quality of the quadrature rules used on the
boundary of the elements than to that used in their interior.

Finally, let us point out that a quadrature-free version of the method was devised by Atkins
and Shu (1998, which results in a very efficient method for linear problems and certain nonlinear
problems such as Euler equations of gas dynamics. A very efficient quadrature rule was obtained
by van der Ven and van der Vegt (2002 for the Euler equations of gas dynamics by suitably
exploiting the structure of the equations.

4.6.3. Numerical fluxes. When dealing with multidimensional hyperbolic systems, the so-
called local Lax-Friedrichs numerical flux is a particularly convenient choice of numerical flux.
Indeed, it can be easily applied to any nonlinear hyperbolic system, it is simple to compute,
and yields good results. This numerical flux is defined as follows. If we set fnK

=
∑N

i=1 ni fi(u),
we define the local Lax-Friedrichs numerical flux as

f̂
LLF

nK
(uh) = {fnK

(uh)} −
C

2
[[uh]]nK
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c© John Wiley & Sons, Ltd. ISBN: 0-470-84699-2



38 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

where C = C(K±) is the larger one of the largest eigenvalue (in absolute value) of
∂/(∂u±)fn

K±
(u±), or, in practice, of ∂/(∂u±)fn

K±
(uK± , where uK± are the means of the

approximate solution uh in the elements K±.

For symmetric hyperbolic systems, it is possible to devise numerical fluxes that render the
method of lines (or the space-time methods) L2-stable; see Barth (2000.

4.6.4. The slope limiter ΛΠh. When we dealt with the scalar one-dimensional conservation
law, the role of the generalized slope limiter ΛΠh was to enforce the TVBM property of a
typical Euler forward time step. In the case of multidimensional scalar conservation laws, we
cannot rely anymore on the TVBM property of the Euler forward step because such a property
does not hold for monotone schemes on general meshes; it has been proven only for monotone
schemes in nonuniform Cartesian meshes by Sanders (1983. We can, instead, rely on a local
maximum principle; see the paper by Cockburn et al. (1990.

A practical and effective generalized slope limiter ΛΠh,M was later developed by Cockburn
and Shu (1998b. To apply it to the function vh, we proceed on the element K as follows:

(i) Compute the L2-projection of vh into the linear functions on K, v1h|K ,
(ii) Compute rh|K = ΛΠ1

h,Mv1h|K ,

(iii) If rh|K = v1h|K , set uh|K = vh|K ,
(iv) If not, set uh|K = rh|K .

Note that in order to use this generalized slope limiter, one only needs to know how to slope
limit piecewise linear functions; for the details of the definition of ΛΠ1

h,M , we refer the reader
to the paper by Cockburn and Shu (1998b.

An interesting limiter has been proposed by Wierse (1997. Kershaw et al. (1998 introduced
a limiter based on quadratic programming. Biswas et al. (1994 devised a limiter based on local
moments, rather than on slopes, and used it for adaptivity purposes. Burbeau et al. (2001
proposed what they call a problem-independent slope limiter.

4.6.5. Characteristic variables. For systems, limiting in the local characteristic variables gives
remarkably superior results than doing it component-by-component.

To limit the vector ṽh(mi,K0) in the element K0 (see Figure 4.6.5), we proceed as follows:

• Find the matrix R and its inverse R−1, which diagonalizes the Jacobian

J =
∂

∂u
f(vK0

) · mi − b0
|mi − b0|
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K3

K1
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K0

b3

b0

b1

m1

b2

Figure 17. Illustration of limiting.

that is, R−1JR = Λ, where Λ is a diagonal matrix containing the eigenvalues of J . Notice
that the columns of R are the right eigenvectors of J and the rows of R−1 are the left
eigenvectors.

• Transform ṽh(mi,K0) and ∆v(mi,K0) to the characteristic fields. This is achieved by
left multiplying these vectors by R−1.

• Apply the scalar limiter to each of the components of the transformed vectors.
• Multiply by R on the left to transform the result back to the original space.

4.7. Computational results

In this section, we display computational results that show that the RKDG method can achieve
exponential convergence when the solution is very smooth and that it can perform as well as
the high-resolution methods when discontinuities are present. We also show results showing
its excellent handling of boundary conditions and its remarkable parallelization properties.
Finally, we also show that the use of higher-degree polynomials results in a more efficient
method, even in the presence of discontinuities.

4.7.1. Exponential convergence. To show that exponential convergence can be achieved and
that it is always more efficient to use higher-degree polynomials when the exact solution is
very smooth, we consider

ut +∇ · (vu) = 0

where v = 2π (−y, x) and the initial condition is a Gaussian hill. In Figure 4.7.1, we see the
L2-error at time T = 1 versus the CPU time for the four different successively refined meshes
described below and for polynomials of degree up to six. The refinement of the mesh is obtained
by dividing the triangles in four congruent triangles. Each line corresponds to a different mesh,
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Figure 18. Spectral convergence and comparison of L2-error versus CPU time for 4 successively refined
meshes and polynomials of degree 1 to 6. (From Aizinger V, Dawson CN, Cockburn B and Castillo P.
Local discontinuous Galerkin method for contaminant transport. Adv. Water Res. 2000; 24:73-87.)

with the symbols on each line representing the error for the six different approximating spaces.
We easily observe that exponential convergence is achieved and that it is always more efficient
to use a coarser mesh with a higher-order polynomial approximation.

4.7.2. Treatment of the boundary conditions. To show the ease with which the method deals
with the boundary conditions, we consider a variation of the above problem

ut +∇ · (vu) = 0

where v = (−y + 1/2, x− 3/4) and the initial data is

u(x, t = 0)

=

{
exp

(
8− 8

1−8|x−(3/4,1)|2

)
, if 8

∣∣x−
(
3
4 ,1
)∣∣2<1

0, otherwise

An RKDG method using quadratic polynomial approximations and a SSP-RK method of order
three is used. Note that, unlike the previous example, only part of the initial data is in the
computational domain. The boundary conditions are taken by using the Lax-Friedrichs flux
and by giving the exact solution as the exterior trace. In Table 4, we see that the full order
three has been achieved, as expected. In Figure 19, we also see that the boundary conditions
have been captured very well by the RKDG method.
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Figure 19. Approximate solution at T = 0.0 (a), T = (3/8)π (b) and T = (3/4)π (c). The mesh is a
uniform 64× 64 of triangles.

Table 4. Errors at T = (3/4)π.

Mesh ‖ eu(T ) ‖L∞(Ω) Order ‖ eu(T ) ‖L1(Ω) Order

16× 16 0.21E-01 2.01 0.42E-03 3.32
32× 32 0.25E-02 3.07 0.42E-04 3.31
64× 64 0.32E-03 2.96 0.49E-05 3.11
128× 128 0.52E-04 2.64 0.60E-06 3.01
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Figure 20. Effect of the order of the RKDG method on the approximation of discontinuities. The
exact solution at time T = 100, u (- - - -), is contrasted against the approximate solution uh ( )
obtained with the RKDG method of order k + 1 on a mesh of 40 elements for the values k = 0 (a),

k = 1 (b), k = 2 (c), k = 3 (d), k = 4 (e), and k = 5 (f). No limiter was used.

4.7.3. Approximation of contact discontinuities. Let us now show how the contact
discontinuities are approximates by the RKDG methods. To do that, we consider the problem

ut + ux = 0, in [0, 1)× (0, T )

with periodic boundary conditions and initial condition

u(x, 0) =

{
1, if x ∈ (0.25, 0.75)
0, otherwise

In Figures 20 and 21, we show the results given by RKDG methods using polynomials of degree
k and a (k+1)-stage, (k+1)th-order accurate SSP-RK method. We see that as the polynomials
degree increases, so does the quality of the approximation of the contact discontinuity, except,
perhaps for the unwanted oscillations near them.

4.7.4. Approximation of shocks. First, let us show in a simple example that the RKDG
methods can capture shocks as well as any high-resolution finite difference or finite volume
scheme. Consider the approximation of the entropy solution of the inviscid Burgers equation

ut +

(
u2

2

)

x

= 0

on the domain (0, 1)×(0, T ) with initial condition 1/4+sin(π(2x−1))/2 and periodic boundary
conditions. In Figure 22, we display the RKDG solution using piecewise linear and piecewise
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c© John Wiley & Sons, Ltd. ISBN: 0-470-84699-2



DISCONTINUOUS GALERKIN METHODS FOR COMPUTATIONAL FLUID DYNAMICS 43

0

0

0.2

0.4

0.6

0.8

1

1.2

0
1

2
3

4
5

6

1
2

3
4

5
6(a)

P1

x
y

0

0

0.2

0.4

0.6

0.8

1

1.2

0
1

2
3

4
5

6

1
2

3
4

5
6(b)

P6

x
y

n n

Figure 21. Effect of the order of the RKDG method on the approximation of discontinuities.
Comparison of the exact and the RKDG solutions at T = 100π with k = 1 (a) and k = 6 (b).
Two dimensional results with 40 × 40 squares. No limiter was used. (Reproduced from Cockburn B
and Shu C-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J.

Sci. Comput. 2001; 16:173-261, by permission of Kluwer Academic/Plenum Publishers.)

quadratic approximations; note how, in both cases, the shock has been captured within three
elements as would be expected of any high-resolution scheme.

4.7.5. Parallelizability. Let us address the parallelizability of the RKDG method. In Table 5
below, we display the results obtained by Biswas et al. (1994; we see the solution time and
total execution time for the two-dimensional problem

ut + ux + uy = 0

on the domain (−π, π)2× (0, T ) with initial condition u(x, y, 0) = sin(πx) sin(πy) and periodic
boundary conditions. Biswas et al. (1994 used 256 elements per processor and ran the RKDG
method with polynomials of degree two and eight time steps; the work per processor was kept
constant. Note how the solution time increases only slightly with the number of processors
and the remarkable parallel efficiency of the method.

4.7.6. Approximation of complex solutions. Let us show that the RKDG method can handle
solutions with very complicated structure. Consider the classical double-Mach reflection
problem for the Euler equations of gas dynamics. In Figure 23, details of the approximation
of the density are shown. Note that the strong shocks are very well resolved by the RKDG
solution using piecewise linear and piecewise quadratic polynomials defined on squares. Also,
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Figure 22. Burgers equation: Comparison of the exact and the RKDG solutions obtained with
∆x = 1/40 at T = 0.40. Full domain (a) and zoom on three elements (b) the first of which contains the
exact shock. Exact solution ( ), piecewise linear approximation (. . . . . . . . . . . . . .), and piecewise
quadratic approximation (- - - -). (From Cockburn B. High-Order Methods for Computational Physics,
Volume 9 of Lecture Notes in Computational Science and Engineering, Discontinuous Galerkin
methods for convection-dominated problems, Barth T and Deconink H (eds), 69-224, 1999, Copyright

Springer-Verlag Gmbh & Co.KG, Berlin.)
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Figure 23. Euler equations of gas dynamics double Mach reflection problem. Isolines of the density
around the double Mach stems. Quadratic polynomials on squares ∆x = ∆y = (1/240) (a); linear
polynomials on squares ∆x = ∆y = (1/480) (b); and quadratic polynomials on squares∆x = ∆y =
(1/480) (c). (From Cockburn B and Shu C-W. The Runge-Kutta discontinuous Galerkin finite element
method for conservation laws V: multidimensional systems. J. Comput. Phys. 1998b; 141:199-224.)
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Figure 24. Forward facing step problem. Approximation of the density ̺. 30 equally spaced contour
lines from ̺ = 0.090338 to ̺ = 6.2365. (From Cockburn B and Shu C-W. The Runge-Kutta
discontinuous Galerkin finite element method for conservation laws V: multidimensional systems.

J. Comput. Phys. 1998b; 141:199-224.)

note that there is a remarkable improvement in the approximation of the density near the
contacts when going from linear to quadratic polynomials.

A similar conclusion can be drawn in the case of the flow of a gas past a forward facing step
(see Figure 24); see, also, the study by Woodward and Colella (1984.

4.7.7. Problems with curved boundaries. Bassi and Rebay (1997b showed the importance
of approximating as accurately as possible the boundaries of the physical domain and the
ease with which this is achieved by using the RKDG methods. Indeed, for the classical
two-dimensional isentropic flow around a circle, they showed that approximating the circle
by a polygon results in nonphysical entropy production at each of the kinks, which is then
carried downstream and accumulates into a nonphysical wake, which does not disappear by
further refining the mesh. However, by simply taking into account the exact shape of the
boundary, a remarkably improved approximation is obtained; see Figure 25.

On the other hand, van der Vegt and van der Ven (2002a have shown that the high-order
accurate representation of the curved boundary can be avoided by using local mesh refinement.
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Table 5. Scaled parallel efficiency. Solution times (without I/O) and total execution times measured on
the nCUBE/2. (From Biswas R, Devine KD and Flaherty J. Parallel, adaptive finite element methods

for conservation laws. Appl. Numer. Math. 1994; 14:255-283.)

Number of Solution parallel Total parallel
processors Work (W ) Solution time (secs.) efficiency (%) Total time (secs.) efficiency (%)

1 18 432 926.92 - 927.16 -
2 36 864 927.06 99.98 927.31 99.98
4 73 728 927.13 99.97 927.45 99.96
8 147 456 927.17 99.97 927.58 99.95
16 294 912 927.38 99.95 928.13 99.89
32 589 824 927.89 99.89 929.90 99.70
64 1 179 648 928.63 99.81 931.28 99.55
128 2 359 296 930.14 99.65 937.67 98.88
256 4 718 592 933.97 99.24 950.25 97.57

(a) (b)

Figure 25. Mach isolines of the DG approximation with P1 elements the circle is approximated by a
polygonal (a) and rendered exactly (b). (From Bassi F and Rebay S. High-order accurate discontinuous

finite element solution of the 2-D Euler equations. J. Comput. Phys. 1997b; 138:251-285.)

4.7.8. Adaptivity for the Euler equations of gas dynamics. Next, we give examples of
adaptivity using the RKDG method with anisotropic mesh refinement. The first two examples
illustrate the use of conforming mesh refinement. For the first example, two Sedov-type
explosions in an open square domain develop and interact while bouncing on square obstacles
and interacting with each other; see Figure 26. In the second example, the blast of a cannon
is simulated in order to understand the shape of the blast waves around the muzzle break; see
Figure 27.

Finally, we present an example of a steady state computation on an ONERA M6 wing for
which nonconforming refinement has been employed; see Figure 28.
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(a)

(b)

Figure 26. Two explosions in a square domain with obstacle density (a), and
the corresponding mesh (b) after 1 second. (From Remacle J-F, Li X, Chevau-
geon N, Shephard MS and Flaherty JE. (2003). Anisotropic Adaptive Simulation
of Transient Flows Using Discontinuous Galerkin Methods, 2003, Submitted.)
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(a) (b)

Figure 27. Cannon-blast simulation density and the corresponding mesh. Close up on the muzzle break
at an early stage (a), and after the main blast wave left the muzzle (b). (From Remacle J-F, Li X,
Chevaugeon N, Shephard MS and Flaherty JE. (2003). Anisotropic Adaptive Simulation of Transient

Flows Using Discontinuous Galerkin Methods. 2003, Submitted.)

4.7.9. Simulation of inertial confinement fusion. Our final example is the simulation of the
implosion of a NIF capsule which consists of a nearly vacuous inner region enclosed by two
spherical shells. For details, see Shestakov et al. (2001. This is a complicated and very difficult
problem which involves the simulation of hydrodynamics, heat conduction and radiation
transport phenomena. Only the hydrodynamics part of the problem is simulated by using
a one-step ALE, RKDG method proposed by Kershaw et al. (1998 and implemented in the
ICF3D code by Shestakov et al. (2000. In Figure 31, we see the mesh and several physical
quantities after 8 nanoseconds of having deposited energy on the outer surface of the capsule.
Note the near spherical symmetry of the implosion.

4.8. Enforcing range invariance of the DG approximations

To end this section, we describe a technique for enforcing a range-invariance property of the
RKDG methods was introduced by Zhang and Shu (2010b in the framework of nonlinear scalar
hyperbolic conservation laws.

For the sake of clarity, we describe this technique for RKDG methods for the initial-value
problem:

ut + f(u)x = 0 in (0, T )× R u = u0 on {T} × R.
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Figure 28. Final adapted mesh on ONERAM6 wing, clearly showing the lambda shock (flow conditions
M∞ = 0.84, α = 3.06◦). (From van der Vegt JJW and van der Ven H. Discontinuous Galerkin finite
element method with anisotropic local mesh refinement for inviscid compressible flows. J. Comput.

Phys. 1998; 182:46-77.)

In this case, it is well known that the exact solution satisfies the range-invariance (or maximum
principle) property

u(t, x) ∈ [m,M ] for all (t, x) ∈ (0, T )× R,

where m := infx∈R u0(x) and M := supx∈R u0(x).

Suppose that we are given the RKDG approximation at the i-th intermediate stage after the
application of the generalized slope limiter ΛΠh,M . Then, on the element Ij := (xj−1/2, xj+1/2),
we modify the function as follows:

u
(i)
h := θ(u

(i)
h − u

(i)
h ) + u

(i)
h ,

where

θ :=

{∣∣∣∣∣
M − u

(i)
h

Mj − u
(i)
h

∣∣∣∣∣ ,
∣∣∣∣∣
m− u

(i)
h

mj − u
(i)
h

∣∣∣∣∣ , 1
}
,

and mj := infx∈Sj
u
(i)
h (x) and Mj := supx∈Sj

u
(i)
h (x). Here Sj denotes a set of suitably chosen

points lying on [xj−1/2, xj+1/2]. Typically, they are chosen as Gauss-Lobatto quadrature points.
This modification does not alter the high-order accuracy of the method and enforces the range-
invariance property

uh(t
n, x) ∈ [m,M ] for all (t, x) ∈ (0, T )× Sj ∀j ∈ Z.
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under a suitable CFL condition. An illustration is provided in Figures 29 and 30. Therein, the
slope limiter ΛΠh,M has not been applied since it is not needed to enforce convergence to the
physically relevant solution.
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Figure 29. Approximations provided by the RKDG method at time T = 100 of the solution of the
transport equation ut + ux = 0 with an initial condition u0(x) = 0 for x ≤ 0 and u0(x) = 1 for x > 0
defined on the interval (−1, 1) with periodic boundary conditions. Here, k = 5,∆t = 1

16
∆x,∆x = 1/16

and the time-marching method is the SSP RK method or order 3. Without (left) and with (right)
bound-preserving limiter. Cell averages (top) and Gauss-Lobatto points (bottom) are plotted. Note
how the limiter enforces strict maximum principle for all Gauss-Lobatto point values and cell averages

of the numerical polynomial solution. Courtesy of Chi-Wang Shu and Xiongxiang Zhang.

Applications and extensions of this technique were carried out by Zhang and Shu (2010c;
Zhang and Shu (2011; Hu et al. (2013 to the compressible Euler equations, by Zhang
et al. (2012; Zhang et al. (2013 for triangular meshes, by Qin et al. (2016 to relativistic
hydrodynamics, and by Vilar et al. (2016b; Vilar et al. (2016a to multimaterial compressible
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Figure 30. Approximations provided by the RKDG method at time T = 2 of the solution of the
transport equation ut + ux = 0 with an initial condition u0(x) = sin4(πx) defined on the interval
(−1, 1) with periodic boundary conditions. Here, k = 2,∆t = 1

5
∆x,∆x = 1/16 and the time-marching

method is the SSP RK method or order 3. Three Gauss-Lobatto point values are ploted for each
element. Note how the limiter does not ”clip” a smooth extremum, unlike the TVD limiter. Courtesy

of Chi-Wang Shu and Xiongxiang Zhang.

flows.

4.9. A posteriori error estimation and adaptivityFor pioneering work on adaptivity for nonlinear problems , see the papers by Biswas et al.
(1994, Devine et al. (1995, Devine and Flaherty (1996, Flaherty et al. (1997; Flaherty et al.
(1998; Flaherty et al. (1999, Flaherty et al. (2000.

The only rigorous a posteriori error estimate in the L∞(0, T ;L1(RN ))-norm was obtained by
Cockburn and Gremaud (1996. It holds for the approximation given by an space-time, shock-
capturing DG method for nonlinear hyperbolic conservation laws in multiple-space dimensions.
The entropy solution can display discontinuities. For more recent work on the subject see the
review by Ohlberger (2009. See also the paper by Giesselmann et al. (2015 on a posteriori
error estimates for the semidiscrete version of DG methods for smooth solutions of nonlinear
systems of conservation laws.
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5. Steady-state diffusion

In this section, we consider DG methods for a second-order elliptic model problem, steady-
state diffusion. We do this not only because this also has direct applications to fluid flow (in
porous media, for example) but mainly as a much needed transition towards the devising of DG
methods for convection-dominated flows. The emphasis here is on the fact that the numerical
fluxes used in the framework of hyperbolic conservation laws are not associated to approximate
Riemann solvers anymore. Instead, they are better understood if they are considered to be
numerical traces that must be chosen in order to render the DG method both stable and
accurate. We show that, also in this context, the stability of the DG methods is enhanced by
the jumps of the approximate solution and that they are a particular case of stabilized mixed
methods. We also show that the inter-element jumps control the quality of the approximate
solution and discuss the convergence properties of the methods for various choices of numerical
traces.

We present these ideas for the second-order elliptic model problem:

−∆u = f in Ω, u = uD on ∂Ω,

where Ω is a bounded domain of RN and n is the outward unit normal to its boundary.

5.1. General form of the DG methods

5.1.1. Definition. A way to define a DG method consists in rewriting the elliptic model
problem as a system of first-order equations, namely,

q = ∇u, −∇ · q = f in Ω, u = uD on ∂Ω

and then applying to it a DG discretization. Thus, the approximate solution (qh, uh) on
the element K is taken in the space V(K) × W (K) and is defined as the solution, for all
(v, w) ∈ V(K)×W (K), of the equations

(qh, v)K + (uh,∇ · v)K − 〈ûh,nK · v〉∂K = 0,

(qh,∇v)K − 〈q̂h · nK , v〉∂K = (f, v)K .

The Dirichlet boundary condition is enforced by requiring that ûh = uD on ∂K ∩ ∂Ω. All the
DG methods are generated by choosing the local spaces V(K) × W (K) and the numerical
traces q̂h · nK and ûh. This completes the definition of the DG methods.

Next, we discuss some simple properties that hold for all of them.

5.1.2. The numerical traces. Just as for DG methods for hyperbolic problems, the definition
of the numerical traces q̂h and ûh strongly influences the properties of the corresponding DG
method. In this context, we also require that the numerical traces be linear functions of the
traces of qh · nK and uh (on the boundary of the element ∂K) which are consistent and
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Figure 31. ICF capsule implosion mesh (a) with colors indicating to which processor the element
belongs. Density (b), matter temperature (c), and radiation temperature (d) at 8 nanoseconds. (From
Shestakov AI, Milovich JL and Prasad MK. Combining cell- and point-centered methods in 3-D,

unstructured-mesh hydrodynamics codes. J. Comput. Phys. 2001; 170:81-111.)

single valued. As for the original DG method, the first property renders the numerical traces
easy to evaluate and ensures a high degree of locality of the method. The very form of the
numerical traces also influences the way the DG methods can be implemented, as we will see.
The consistency of the traces ensures the convergence of the method to the correct solution.
The single-valuedness property, which is highly valued in computational fluid dynamics, is
also very important in this context. If violated, the method produces a stiffness matrix for the
primal variable, which is not symmetric; see the paper by Arnold et al. (2002 for a complete
discussion. More importantly, it induces a loss in the rate of convergence in uh as well as a
significant degradation in the quality of the approximation of linear functionals as shown by
Harriman et al. (2003.

5.1.3. Energy identities. If we take (v, w) := (qh, uh) and add the resulting equations, we
obtain what we could call the local energy identity, namely,

(qh, qh)K +ΘK = 〈q̂h · nK , ûh〉∂K + (f, uh)K ,
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where

ΘK := 〈(qh − q̂h) · nK , uh − ûh〉∂K .

By adding on all the elements these equations, we obtain the global energy identity

(qh, qh)Ω +Θh = 〈q̂h · n, ûh〉∂Ω + (f, uh)Ω,

where Θh :=
∑

K∈Th
ΘK . We see that the jumps (qh − q̂h) · nK and uh − ûh can stabilize the

method it they are chosen in such a way that Θh ≥ 0.

5.1.4. Residuals and jumps. Let us next show that the method establishes linear relations
between the residuals in the interior of the element K

Rr := qh −∇uh and Rv := −∇ · qh − f,

and the residuals on its boundary ∂K,

rr := ûh − uh and rv := (q̂h − qh) · nK

Indeed, a simple integration by parts gives that for all (v, w) ∈ V(K)×W (K),

(Rv, v)K = 〈rr,nK · v〉∂K ,

(Rw, w)K = 〈rw, w〉∂K .

Taking v := PVRv and w := PW , where PN denotes the L2(K)-projection into the finite
dimensional space N(K), we obtain that

‖PVRv‖K ≤ C h
−1/2
K ‖rr‖∂K ,

‖PWRw‖K ≤ C h
−1/2
K ‖rw‖∂K .

If we assume that ∇W (K) ⊂ V(K) so that PVRr = Rr, these inequalities say that the jumps
(q̂h−qh) ·nK and ûh−uh, and f−PW f , control the size of the residuals, and hence the quality
of the approximation. This implies that any a posteriori error estimate for DG methods should
only depend on those quantities.

5.1.5. An example. Let us consider the numerical traces proposed in Cockburn and Shu
(1998a and Castillo et al. (2000. With the notation

[[uh]] = u+
h n+ + u−

h n−

and [[qh]] = q+h · n+ + q−h · n+

where ω±
h (x) = lim

ǫ↓0
ωh(x− ǫn±)

the numerical traces are defined as follows. Inside the domain Ω, we take

q̂h := {qh} − Cqq [[qh]]− Cqu [[uh]]

ûh := {uh} − Cuu ·[[uh]]− Cuq[[qh]]
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and on its boundary, we take

q̂h := qh − Cqu(uh − uD)n

ûh := uD.

In this case, assuming that Cqq + Cuu = 0, a simple computation gives us that the global
energy identity is

(qh, qh)Ω +Θh = 〈q̂h · n, uD〉∂Ω + (f, uh)Ω,

where

Θh(qh, uh) := 〈Cuq[[qh]], [[qh]]〉Fi
h
+ 〈Cqu [[uh]], [[uh]]〉Fi

h
+ 〈Cqu(uh − uD), uh − uD〉∂Ω.

We see that, if we assume that Cuq and Cqu are nonnegative, the quantity Θh can be
interpreted as the term capturing the energy of the inter-element jumps [[qh]] and [[uh]], and the
jumps uh − uD on ∂Ω. This suggests that the role of Cuq and Cqu is to stabilize the method.
The role of the other coefficient Cqq = −Cuu, can be that of maximizing the sparsity of the
matrices, see Cockburn et al. (2001, or even that of enforcing the stability and convergence
properties of the DG method resulting when Cuq = Cqu = 0 on F i

h, see Cockburn and Dong
(2007.

We can use the above global energy identity to obtain the existence and uniqueness of the
approximate solution in the simple but important case in which

(i) Cuq ≥ 0 on F i
h,

(ii) Cqu > 0 on F i
h ∪ ∂Ω,

(iii) ∇W (K) ⊂ V(K) ∀K ∈ Th.

Again, we only have to show that, when we set the data f and uD to zero, the only solution
is the trivial one. But in this case, the above energy identity gives that

(qh, qh)Ω + 〈Cuq[[qh]], [[qh]]〉Fi
h
+ 〈Cqu [[uh]], [[uh]]〉Fi

h
+ 〈Cquuh, uh〉∂Ω = 0,

which implies, by (i) and (ii), that qh = 0 on Ω, that [[uh]] = 0 on F i
h, and that Cquuh = 0 on

∂Ω. As a consequence, we have that ûh = uh on F i
h ∪ ∂Ω, and the first equation defining the

DG method reads

−(∇uh, r)K = 0

for all r ∈ V(K). By (iii) we can take r := ∇uh and conclude that uh is a constant on the
element K. Since uh = ûh on the interelement boundaries, uh is a constant on Ω, and since
uh = 0 on ∂Ω, we get that uh = 0 on Ω. This completes the proof.

Let us end by pointing out that this DG method is in fact a stabilized mixed finite element
method whenever we require that Cuu + Cqq = 0 and Cqu and Cuq are non-negative. To see
this, we only have to notice that (qh, uh) is the element of Vh ×Wh, where

Vh = {v ∈ L2(Ω) : v ∈ V(K) ∀ K ∈ Th}
Wh = {w ∈ L2(Ω) : w ∈ W (K) ∀ K ∈ Th}
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that solves the equations

ah(qh, v) + bh(uh, v) = 〈uD, v · n〉∂Ω
−bh(w, qw) + ch(uh, w) = (f, v)Ω + 〈CquuD, v〉∂Ω

for all (v, w) ∈ Qh × Uh, where

ah(q, r) := (q, r)Ω + 〈Cuq[[qh]], [[r]]〉Fi
h

bh(u, r) := (u,∇ · r)Th
− 〈{u} − Cuu · [[u]], [[r]]〉Fi

h

ch(u, v) := 〈Cqu [[u]], [[v]]〉Fi
h
+ 〈Cquu, v〉∂Ω,

where (·, ·)Th
:=
∑

K∈Th
(·, ·)K and (·, ·)Fi

h
:=
∑

F∈Fi
h
(·, ·)F , where F i

h is the set of faces F of

the triangulation Th. Note that Cqq does not appear in the definition of these bilinear forms
because we are assuming that Cuu + Cqq = 0. Note that the method has two stabilization
terms, namely, the one associated to the jumps in the normal component of the flux, [[qh]], and
the other asociated to the jumps of the scalar vairable, [[uh]]. Both have important effects on
the accuracy of the method.

Indeed, some convergence properties of these methods in terms of the spaces and numerical
traces are given in the Table 6; for a proof, see Castillo et al. (2000. The so-called minimal
dissipation DG method takes Cqu = 0 and Cuq = 0 on the interior faces, and Cqu = 1/h and
Cuq = 0 on the boundary faces. For simplexes, it has the same order of convergence that the
third method in Table 6. This can be achieved by taking a special choice of Cuu and Cqq; see
the work by Cockburn and Dong (2007.

Table 6. Orders of convergence of the DG methods in terms of the local spaces and the stabilization
parameters. We assume that Cuu and Cqq are uniformly bounded and that Cuu+Cqq = 0. The meshes
are made of shape-regular elements of arbitrary shape. The space of vector-valued functions Pℓ(K)

can be replaced by the space ∇Pℓ+1(K) without altering the orders of covergence.

V(K) W (K) Cqu Cuq qh uh

Pk(K) Pk(K) h 1/h k + 1 k
Pk(K) Pk(K) 1 1 k + 1/2 k + 1
Pk(K) Pk(K) 1/h h, 0 k k + 1

Pk−1(K) Pk(K) 1/h h, 0 k k + 1

5.2. DG methods allowing for an easy elimination of qh

Let us consider DG methods having a numerical trace ûh independent of qh. This allows for the
easy elimination of the variable qh, which can now be expressed in terms of uh in an elementwise
manner, and results in the so-called primal formulation of the method. The main DG methods
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of this type are displayed in Table 7. There, αj([[uh]]) := Cqu[[uh]] and αr([[uh]]) denotes the
stabilization introduced by Bassi et al. (1997 and later studied by Brezzi et al. (2000. The effect
of both stabilizations is essentially the same; however, that latter produces a method with a
more sparse stiffness matrix for uh. Note that the methods proposed by Cockburn and Shu
(1998a are called the local DG (LDG) methods, whereas the methods by Baker (1977; Arnold
(1982 are called the IP (IP) methods. Let us note that the so-called compact DG method
proposed by Peraire and Persson (2008 increases the sparsity of the matrix for uh of the LDG
method while maintaining the same orders of convergence. In Castillo (2010, an algorithm to
increase the sparsity of the LDG method wss introduced.

Not all DG methods were originally proposed in the form we have used to present them.
Many of them were proposed directly in the primal form

Bh(uh, v) = (f v)Ω − 〈uD,∇v · n+ Cqu v〉∂Ω

The two main examples are the IP method, proposed by Arnold (1982, see also Baker (1977
where the biharmonic problem was considered, for which we have

Bh(uh, v) = (∇uh,∇v)Th

−〈[[uh]], {∇v}〉Fi
h
− 〈uh,∇v · n〉∂Ω

−〈{∇uh}, [[v]]〉Fi
h
− 〈∇uh · n, v〉∂Ω

+〈Cqu[[uh]], [[v]]〉Fi
h
+ 〈Cquuh, v〉∂Ω,

and the method proposed by Baumann and Oden (1999, for which we have

Bh(uh, v) = (∇uh,∇v)Th

−〈[[uh]], {∇v}〉Fi
h
− 〈uh,∇v · n〉∂Ω

+〈{∇uh}, [[v]]〉Fi
h
+ 〈∇uh · n, v〉∂Ω

+〈Cqu[[uh]], [[v]]〉Fi
h
+ 〈Cquuh, v〉∂Ω,

where Cqu = 0.

A theoretical study of the main DG methods introduced up to the end of last century for
the elliptic model problem is carried out in a single, unified approach by Arnold et al. (2002.
Here, the mixed formulation is not used to carry out the analysis. Instead, the variable qh
is eliminated from the equations. A primal formulation is thus obtained, which is used to
analyze the method. In Table 8, we have summarized the properties of various DG methods.
We display the properties of consistency and conservativity of the numerical fluxes, of stability
of the method, of the type of stability (the symbol αj is used to denote the stabilization
associated with the terms Cqu [[uh]]

2), the condition on Cqu for achieving stability, and the
corresponding rates of convergence.

Error estimates in the L∞-norm for the IP methods have been obtained in Kanschat and
Rannacher (2002 and Chen and Chen (2004. For the other DG methods displaying consistent
and single-valued numerical traces, see Guzmán (2006. The sub-optimal convergence, for odd
polynomial approximations, in the L2-norm of the error of the scalar approximation of the

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Table 7. Some DG methods and their numerical traces. The elements K are simplexes, the spaces are
V(K) = [Pk(K)]d, W (K) = Pk(K). We also have that Cuu + Cqq = 0.

Method q̂h,K ûh,K

Bassi and Rebay (1997a {qh} {uh}
Cockburn and Shu (1998a {qh} − Cqq[[qh]]− Cqu [[uh]] {uh} − Cuu · [[uh]]
Brezzi et al. (2000 {qh} − αr([[uh]]) {uh}
Baker (1977,Arnold (1982 {∇uh} − Cqu [[uh]] {uh}
Bassi et al. (1997 {∇uh} − αr([[uh]]) {uh}
Baumann and Oden (1999 {∇uh} {uh} − nK · [[uh]]
Rivière et al. (1999 {∇uh} − Cqu[[uh]] {uh} − nK · [[uh]]
Babuška and Zlámal (1973 −Cqu[[uh]] uh|K
Brezzi et al. (2000 −αr([[uh]]) uh|K
(Modified from Arnold DN, Brezzi F, Cockburn B and Marini D. SIAM Journal on

Numerical Analysis, Unified analysis of discontinuous Galerkin methods for elliptic problems,
39:1749-1779, 2001, Copyright Society for Industrial and Applied Mathematics,

Philadelphia.)

Table 8. Properties of the DG methods. The elements K are simplexes, the spaces are V(K) =
[Pk(K)]d, W (K) = Pk(K). We also have Cuu + Cqq = 0.

Method Consistency Conservativity Stability Type η0 = hCqu H1 L2

Brezzi et al. (1999
√ √ √

αr η0 > 0 hp hp+1

Cockburn and Shu (1998a
√ √ √

αj η0 > 0 hp hp+1

Baker (1977,Arnold (1982
√ √ √

αj η0 > η∗ hp hp+1

Bassi et al. (1997
√ √ √

αr η0 > 3 hp hp+1

Rivière et al. (1999
√

×
√

αj η0 > 0 hp hp

Babuška and Zlámal (1973 × ×
√

αj η0 ≈ h−2p hp hp+1

Brezzi et al. (2000 × ×
√

αr η0 ≈ h−2p hp hp+1

Baumann and Oden (1999 (p = 1)
√

× × - - × ×

Baumann and Oden (1999 (p ≥ 2)
√

× × - - hp hp

Bassi and Rebay (1997a
√ √

× - - [hp] [hp+1]

(Modified from Arnold DN, Brezzi F, Cockburn B and Marini D. SIAM Journal on Numerical
Analysis, Unified analysis of discontinuous Galerkin methods for elliptic problems, 39:1749-
1779, 2001, Copyright Society for Industrial and Applied Mathematics, Philadelphia.)
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DG methods proposed in Baumann and Oden (1999 and Rivière et al. (1999 was proven in
Guzmán and Rivière (2009.

Superconvergence results for the approximation inside the elements have been obtained by
Adjerid and Baccouch (2012 and for the numerical traces by Celiker and Cockburn (2007.

A numerical study of various of these methods was carried out in Castillo (2002. He found,
in particular, that qh is a much better approximation to q than ∇uh; that the penalization
parameter Cqu must be taken as η0/h, where h is a measure of the diameters of the elements,
to obtain a condition number of the matrix for uh of order h−2; and that when η0 is taken to be
too big, all the DG methods give similar approximations. The hp-version of the IP method on
general computational meshes consisting of polygonal/polyhedral elements of arbitrary shapes
was considered by Cangiani et al. (2014; the elements are also allowed to have degenerating
faces.

A posteriori error estimates for the IP method were obtained by Karakashian and Pascal
(2003; Houston et al. (2007; Ainsworth (2007; Cochez-Dhondt and Nicaise (2008; R. Lazarov
and Tomar (2009; Creusé and Nicaise (2010 for the symmetric IP methods, in Becker et al.
(2003; A. Ern and Vohraĺık (2007; Ainsworth and Rankin (2010 for the symmetric and non-
symmetric IP methods, in Bustinza et al. (2005 for the local DG methods, and in Juntunen
and Stenberg (2008 for the Bassi-Rebay DG methods. For the L2-norm of the error in the
scalar variable, they have been obtained in Rivière and Wheeler (2003 for the non-symmetric
IP method and in Castillo (2005 for the local DG method. A unified a posteriori error analysis
of all the DG methods for second-order elliptic problems considered in Arnold et al. (2002 was
carried out in Carstensen et al. (2009. Another unified a posteriori error analysis, based on the
point of view proposed in Brezzi et al. (2006, was carried out in Lovadina and Marini (2009.

The convergence of an adaptive algorithm for the IP method was proved by Karakashian
and Pascal (2007; Hoppe et al. (2008; Bonito and Nochetto (2010.

5.3. The HDG methods

The DG methods just considered have numerical traces which allow for the elimination of the
variable qh in order to obtain a formulation of the method in terms of uh only. The HDG
methods have numerical traces which allow for the elimination of both qh and uh in order to
obtain a formulation of the method in terms of ûh only. The size of the stiffness matrix of the
HDG methods are thus significantly smaller than those of the previously mentioned methods.
The HDG methods are also more accurate, as we are going to see. We follow closely the work
done by Cockburn (2015.

5.3.1. Definition. The HDG methods are obtained as a discrete version of the following
characterization of the exact solution. On the element K, for any given f |K and Dirichlet
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boundary data û |∂K , we take (q, u) to be the solution of the local problem

q = ∇u, −∇ · q = f in K, u = û in ∂K.

Then the single-valued function û is determined by solving the global problem obtained by
imposing the following transmission and boundary conditions:

[[q ]] = 0 on F i
h and û = uD in ∂Ω.

To obtain the HDG methods, we solve the local problem on each element K ∈ Th by
using a DG method. We solve the global problem by imposing the transmission and boundary
conditions weakly. So, on the element K ∈ Th, for any given f |K and Dirichlet boundary data
ûh|∂K ,we define (qh, uh) ∈ V(K)×W (K) as the solution of the local problem

(qh, v)K + (uh,∇ · v)K − 〈ûh, v · n〉∂K = 0 ∀v ∈ V(K),

(qh,∇w)K − 〈q̂h · n, w〉∂K = (f, w)K ∀w ∈ W (K),

where
q̂ · n := qh · n− τ(uh − ûh) on ∂K,

where the function τ is linear. Note that here we consider ûh|∂K to be data of this problem.
To determine it, we take the numerical trace ûh in the space

Mh := {µ ∈ L2(Fh) : µF ∈ M(F ) ∀F ∈ Fh},
where M(F ) is a suitably chosen finite dimensional space, and require that it be determined
as the solution of the following global problem consisting in weakly imposed transmission and
boundary conditions:

〈µ, [[q̂h]]〉Fi
h
= 〈µ, q̂h · n〉∂Th\∂Ω = 0,

〈µ, ûh〉∂Ω = 〈µ, uD〉∂Ω,
for all µ ∈ Mh. This completes the definition of the HDG methods.

Notice that ûh is the data of the local problems but is the unknown of the global problem. So,
the only globally-coupled degrees of freedom are those of ûh. By solving the local problems, we
express qh, uh and q̂h in terms of ûh and f . With these expressions, we construct the matrix
equation associated to the global problem. After solving it, we can insert the actual values
of ûh in the expressions we had obtained for qh, uh and q̂h. Next, we describe this procedure
more precisely.

5.3.2. The problem for ûh. We begin by introducing some notation associated to the local
problems. On the elementK ∈ Th, for any µ ∈ L2(∂K), the function (Qµ,Uµ) ∈ V(K)×W (K)
is the solution of the local problem

(Qµ, v)K − (Uµ,∇ · v)K + 〈µ, v · n〉∂K = 0 ∀v ∈ V(K),

−(Qµ,∇w)K + 〈Q̂µ · n, w〉∂K = 0 ∀w ∈ W (K),

Q̂µ · n := Qµ · n+ τ(Uµ − µ) on ∂K,
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and, for any f ∈ L2(K), the function (Qf ,Uf ) ∈ V(K) × W (K) is the solution of the local
problem

(Qf , v)K − (Uf ,∇ · v)K = 0 ∀v ∈ V(K),

−(Qf ,∇w)K + 〈Q̂f · n, w〉∂K = (f, w)K ∀w ∈ W (K),

Q̂f · n := Qf · n+ τ(Uf ) on ∂K.

With this notation, we can write that

(qh, uh) = (Qµ,Uµ) + (Qf ,Uf ),

where ûh is the solution of the global problem. Next, we give a characterization of the problem
for the globally-coupled unknown ûh by suitably rewriting the transmission condition. We are
now ready to state the result. Therein, we are going to use the following notation:

Mh(g) := {µ ∈ Mh : 〈λ, µ〉∂Ω = 〈λ, g〉∂Ω ∀λ ∈ Mh},
Theorem 4 (Characterization of ûh) Assume that

(i) τ |F is a strictly positive constant ∀F ∈ Fh,

(ii) ∇W (K) ⊂ V(K) ∀K ∈ Th.
Then, the function ûh is the element of Mh(uD) such that

ah(ûh, µ) = ℓh(µ) ∀ µ ∈ Mh(0),

where ah(µ, λ) := −〈µ, Q̂λ · n〉∂Th
and ℓh(µ) := 〈µ, Q̂f · n〉∂Th

. Moreover,

ah(µ, λ) = (Qµ,Qλ)Th
+ 〈Uµ − µ, τ(Uλ − λ)〉∂Th

, ℓh(µ)= (f,Uµ),

and ah(·, ·) is symmetric and positive definite on Mh(0)×Mh(0). Thus, ûh minimizes the total
energy functional Jh(µ) :=

1
2ah(µ, µ)− ℓh(µ) over Mh(uD).

This result shows that the method can be implemented in a way typical of finite element
methods. Note that the equation satisfied by ûh is nothing but the transmission condition.
Indeed, since q̂h ·n = Q̂û ·n+Q̂f ·n, the transmission condition 〈µ, q̂h ·n〉∂Th\∂Ω = 0 ∀µ ∈ Mh,
becomes

−〈µ, Q̂û · n〉∂Th
= 〈µ, Q̂f · n〉∂Th

∀µ ∈ Mh(0).

Note also that to obtain the matrix equation for the degrees of freedom of û, we only need to
compute the mapping µ 7→ (Qµ,Uµ). The computation of the mapping is not f 7→ (Qf ,Uf )
required. Finally, note that the fact that the bilinear for ah(·, ·) is symmetric and positive
definite on Mh(0) × Mh(0) is a reflection that it approximates the solution u of a strangle
elliptic, self adjoint problem.

This result shows that the HDG methods are amenable to static condensation, see Guyan
(1965, thanks to the fact that the method can be hybridized, see Fraejis de Veubeke (1977.
The relation between static condensation, hybridization and the way the HDG methods are
devised is explored by Cockburn (2015. Also there, one can find different ways of rewriting the
HDG methods and how other characterizations of the exact solution can give rise to the same
DHG methods.
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5.3.3. The numerical traces of the HDG methods. Suppose that the stabilization function τ is
a constant on each face and that the local spaces are such that the numerical trace q̂h ·n|F lies
in the space M(F ) for all interior faces F ∈ F i

h. Then, the transmission condition is equivalent
to

[[q̂h]] = 0 on F i
h.

A simple calculation shows us that the above equation can take place if and only if

ûh =
τ+uh

+ + τ−uh
−

τ+ + τ−
− 1

τ+ + τ−
[[qh]],

q̂h =
τ−qh

+ + τ+qh
−

τ+ + τ−
− τ+τ−

τ+ + τ−
[[uh]],

provided, of course, that τ++ τ− 6= 0. In other words, the DG methods proposed in Cockburn
and Shu (1998a and Castillo et al. (2000 with

Cuq =
1

τ+ + τ−
,

Cqu =
τ+τ−

τ+ + τ−
,

−Cqq = Cuu =
τ+n+ + τ−n−

2(τ+ + τ−)
.

are also HDG methods. These are called LDG-H methods since the numerical method used to
define the local problems is the local DG (LDG) method.

5.3.4. Mixed methods and superconvergent HDG methods. As pointed out in Cockburn et al.
(2009b, when the stabilization function τ can be set identically to zero, we obtain nothing but
the well known hybridized version of the well known mixed methods. In this case, the above
expressions for the numerical traces are not valid anymore and, instead, we simply have that

q̂h · n± = q−h · n± = q−h · n±,

on all interelement boundaries; the unknown ûh can be characterized exactly as in Theorem
4. This suggests that the HDG methods might share with the mixed methods some of its
convergence properties.

This was proven to be true by Cockburn et al. (2008b for a special LDG-H method obtained
by setting τ = 0 on all the faces of the simplex K except one. For this reason, it was called
the single face-hybridizable (SFH) DG method. Moreover, it was shown that the bilinear
forms ah(·, ·) of the Raviart-Thomas (RT), Brezzi-Douglas-Marini (BDM) and SFH methods
are the same, and that these three methods share the same superconvergence property (we
describe below). A similar result was later obtained by Chung et al. (2014 who proved that
the staggered discontinuous Galerkin (SDG) method, originally introduced in the framework
of wave propagation in Chung and Engquist (2009, can be obtained as the limit when the
non-zero values of the stabilization function, which must be defined in suitable manner, of the
SFH method goes to infinity.
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By the above-mentioned superconvergence property we mean that the elemenwise averages
of the error u− uh, converge faster than the errors u− uh and q − qh. As a consequence, we
can define, on the each element K, the new approximation u⋆

h ∈ W ∗(K) := Pk+1(K) as the
solution of

(∇u⋆
h,∇w)K =− (c qh,∇w)K for all w ∈ W ∗(K),

(u⋆
h, 1)K =(uh, 1)K ,

Then u − u⋆
h will converge faster than u − uh. Any HDG method with this property will be

called a superconvergent method.

The orders of convergence, for conforming the meshes made of simplexes, are displayed in
Tables 9 and 10. The symbol ⋆ indicates that the non-zero values of the stabilization function
τ only need to be uniformly bounded by below.

Table 9. Examples of mixed and HDG methods defined on simplexes.

Method V(K) W (K) M(F )

RT Raviart and Thomas (1977 Pk(K) + x P̃k(K) Pk(K) Pk(F )
SFH Cockburn et al. (2008b Pk(K) Pk(K) Pk(F )
SDG Chung and Engquist (2009 Pk(K) Pk(K) Pk(F )
LDG-H Cockburn et al. (2009b Pk(K) Pk(K) Pk(F )
BDM Brezzi et al. (1985 Pk(K) Pk−1(K) Pk(F )

Table 10. Orders of convergence (in the corresponding L2-norms) for simplicial, conforming meshes.

Method τ qh uh uh k

RT Arnold and Brezzi (1985 0 k + 1 k + 1 k + 2 ≥ 0
SFH Cockburn et al. (2008b ⋆ k + 1 k + 1 k + 2 ≥ 1
SDG Chung et al. (2014 0,∞ k + 1 k + 1 k + 2 ≥ 1
LDG-H Cockburn et al. (2010d O(1) k + 1 k + 1 k + 2 ≥ 1
BDM Brezzi et al. (1985 0 k + 1 k k + 2 ≥ 2
LDG-H Castillo et al. (2000 O(1/h) k k + 1 k + 1 ≥ 1

The presence of hanging nodes in the meshes does not alter the superconvergence of the
HDG methods, as shown by Chen and Cockburn (2012; Chen and Cockburn (2014. A posteriori
error estimates were obtained by Cockburn and Zhang (2012; Cockburn and Zhang (2013. A
proof of the convergence of an adaptive algorithm for the LDG-H method was obtained by
Cockburn et al. (2016c. The performance of the LDG-H method (with τ of order one) for the
p-Laplacian was numerically explored by Cockburn and Shen (2016. The superconvergence
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Figure 32. HDG approximations, on Ω := (0, 1)2, of the p-Laplacian for p = 1.05 (top) and p = 15
with f equal to ten times the characteristic function of the square (1/4, 3/4)2. The interelement jumps
in the piecewise linear approximation uh (left column) indicate the need of smaller meshes or higher-
degree polynomials. The interelement jumps of the piecewise quadratic postprocessing u∗

h are smaller
than those of uh as the former function is usually a better approximation than the latter. Note the
ability of the method to capture at the same time very strong and very weak gradients (p = 1.05), as

well as functions displaying kinks (p = 15). Courtesy of Jiguang Shen.

properties for the case p = 2 were recovered. In Figure 5.3.4, examples of approximations uh

and the corresponding postprocessing u∗
h are provided. Notice how the size of the interelement

jumps increases whenever the solution has steeper gradients, as expected.

The systematic construction of superconvergent HDG methods was undertaken in Cockburn

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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et al. (2012a where the following sufficient conditions were found. The space V(K) ×W (K)

must have a subspace Ṽ(K)× W̃ (K) satisfying inclusions

P0(K) ⊂ ∇W (K) ⊂ Ṽ(K),

P0(K) ⊂ ∇ · V (K) ⊂ W̃ (K),

V (K) · n|∂K +W (K)|∂K ⊂ M(∂K).

and whose orthogonal complement satisfies the identity

Ṽ
⊥ · n|∂K ⊕ W̃⊥|∂K = M(∂K).

Many new superconvergence HDG and mixed methods were found for simplexes, squares, cubes
and prisms; see also the related new commuting diagrams for the so-called TNT elements on
cubes obtained by Cockburn and Qiu (2014 for the DeRham complex. For curved elements,
see Cockburn et al. (2012b. This work was then further refined by Cockburn et al. (2016b
who introduced the so-called M-decompositions as a tool for the systematic construction of
superconvergent HDG and mixed methods. The actual construction for general polygonal
elements was carried out in Cockburn and Fu (2016a and the actual construction for arbitrary
pyramids, prisms and hexahedral was carried out in Cockburn and Fu (2016b.

5.3.5. Other stabilization functions. So far, we have only considered stabilization function
τ which are simple mutiplication operators. A more sophisticated stabilization function was
introduced in Lehrenfeld (2010, Remark 1.2.4 by Lehrenfeld and Schöberl, see also Lehrenfeld
and Schöberl (2015, and independently by Oikawa (2015. The stabilization function is simply

τLS(uh − ûh) := h−1 · (PM (uh)− ûh),

and was introduced to deal with the case in which W (K)|∂K is not included in M(∂K).
Thanks to this choice of stabilization function optimal orders of convergence for both qh
and uh for regular-shaped, general polyhedral elements can be obtained whenever we take
V(K) := Pk(K),W (K) := Pk+1(K) and M(F ) := Pk(F ); see the proof by Oikawa (2015.

The very same orders of convergence can actually be obtained with the much
smaller local spaces V(K) := ∇Pk+1(K),W (K) := Pk(K) and M(F ) := Pk(F )
if yet another more sophisticated stabilization function is properly constructed: See
the so-called hybrid high-order (HHO) methods introduced by Di-Pietro and Ern
(2015DiPietroErnLemaire14DiPietroErnCRAS14. Although these methods were originally
introduced in a primal form, their relation to the HDG methods was recently established
in Cockburn et al. (2015.

5.4. The embedded DG methods

An embedded DG (EDG) method is obtained by simply taking an already existing HDG
method using the space Mh and requiring that its approximation ûh lie in a space embedded in
Mh. In this way, the computational complexity of the global problem can be greatly reduced.
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An important particular case is the case in which the above-mentioned subspace isMh∩C0(Fh).
Note that the EDG has the very same local problems than the associated HDG method and a
smaller matrix for the global system of the form EtAE, where A is the matrix for the global
system of the original HDG method and E is the matrix associated to the embedding.

Next consider the HDG method for which V(K) := ∇Pk(K),W (K) := Pk(K) and
M(F ) := Pk(F ) with τ = 1, where the elements are simplexes. It was shown by Cockburn et al.
(2009c that the corresponding EDG method withMh∩C0(Fh) as the embedded subspace looses
the superconverence properties of the original HDGmethod. So, the reduction of computational
complexity comes at a heavy price.

The EDG methods were introduced in the framework of linear shells by Güzey et al. (2007,
see also Cockburn et al. (2009b. The method seems to be identical to the second version of
the so-called multiscale DG method introduced by Hughes et al. (2006; the first version was
introduced by Bochev et al. (2006.

5.5. ExtensionsHow to couple DG methods with the classical conforming methods was shown by Alotto et al.
(2001 and Perugia and Schötzau (2001. Moreover, Perugia and Schötzau (2001 combined the
theoretical framework developed by Arnold et al. (2002 with the techniques of analysis of
nonconforming methods to obtain optimal error estimates for the resulting coupling. How to
couple DG methods with mixed methods was shown by Cockburn and Dawson (2002. The
coupling at a distance of HDG methods with BEM was carried out by Cockburn et al. (2012c.

DG methods for multiscale problems have been considered by Wang et al. (2011; Efendiev
et al. (2015.

Extensions to the approximation of eigenvalues and eigenfunctions by using the LDG-H
methods was explored by Gopalakrishnan et al. (2015; see also the corresponding work for the
RT method by Cockburn et al. (2010c.

Extensions to the heat equation are straightforward; see, in particular, the HDG methods
developed by Chabaud and Cockburn (2012. For the heat equation, the so-called direct DG
(DDG) method has been developed by Liu and Yan (2010 which has the distinctive feature
of bypassing the definition of an approximation for the flux and letting its numerical flux to
depend of the interelement jumps of second and higher-order derivatives of the approximation
to the scalar variable. The methods display an optimal order of convergence in an energy-like
norm.

A comparison between the HDG and the continuous Galerkin method has been carried out
by Kirby et al. (2012. See also the study by Huerta et al. (2013.
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5.6. Solvers

A domain decomposition preconditioner for DG approximations for purely elliptic problems
was proposed by Feng and Karakashian (2001. The condition number of their nonoverlapping
preconditioner grows linearly with the number of degrees of freedom in each subdomain. Later,
Lasser and Toselli (2000 found an overlapping domain decomposition method for DG methods
for linear advection-diffusion problems whose condition number is independent of the number
of degrees of freedom and the number of subdomains.

Another significant result has been obtained by Gopalakrishnan and Kanschat (2003b who
devised a multigrid method for solving the matrix equation of the IP method for elliptic
problems. They proved that it convergences in a fixed number of iterations; they have also
devised a method for the steady state convection-diffusion problem, which converges with a
fixed number of iterations independently of the size of the convection coefficients. These solvers
were generalized to the LDG method in primal form, the method by Bassi and Rebay (1997a,
and the method by Brezzi et al. (1999 by Gopalakrishnan and Kanschat (2003a. On the basis
of these solvers, preconditioners for the LDG saddle point systems arising from the mixed
discretization of Poisson and Stokes equations were introduced by Kanschat (2003.

A a semi-algebraic multilevel preconditioner for the local discontinuous Galerkin method
was proposed and studied in P. E. Castillo and Velázquez (2008; Castillo and Sequeira (2013.
A nonnested multigrid V-cycle, with one smoothing per level for the HDG method was
introduced in Cockburn et al. (2014 and proven to converge at a mesh-independent rate.
Domain decomposition methods on complicated domains have been investigated by Antonietta
et al. (2014.

6. The Stokes equations of incompressible fluid flow

In this section, we study the application of DG methods to the Stokes equations of
incompressible fluid flow

L−∇u = 0 in Ω,
−ν∇ · L +∇p = f in Ω,

∇ · u = 0 in Ω,
(p, 1)Ω = 0,

u = uD, on ∂Ω,

where Ω is a bounded domain in Rd with Lipschitz boundary ∂Ω, ν is a viscosity. We
assume that ν is a constant function on Ω and that uD satisfies the compatibility condition
(uD · n, 1)∂Ω = 0.

Since the Laplace operator is applied to each of the components of the velocity, to devise
a DG method, we can simply use any DG method for the steady-state diffusion equation by
applying it to each component of the velocity. This does not present any major difficulty and
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so, here the novelty resides on how to carry out the DG-discretization of the incompressibility
condition. In particular, we show that, even though the approximation of the velocity is
discontinuous, it is possible to obtain an H(div,Ω)-conforming, divergence-free approximate
velocities by means of an elementwise postprocessing. We also show how to devise DG methods
with H(div,Ω)-conforming velocity spaces. Finally, we show how to use finite dimensional
subspaces of divergence-free, H(div,Ω)-conforming without having to actually carry out the
almost impossible construction of their bases. This can only be done in a few cases, see
Thomasset (1981; Hecht (1981; Scott and Vogelius (1985.

6.1. The general form of the DG methods

6.1.1. Definition. The approximation (Lh,uh, ph) on the elementK ∈ Th is taken in the space
G(K)×V(K)×Q(K) and is defined as the solution, for all (G,v, q) ∈ G(K)×V(K)×Q(K),
of the equations

(Lh,G)K + (uh,∇ ·G)K − 〈ûL
h,GnK〉∂K = 0,

ν (Lh,∇v)K − (ph,∇ · v)K − 〈νL̂hnK − p̂hnK ,v〉∂K = (f ,v)K ,

−(uh,∇q)K + 〈ûp
h · nK , q〉∂K = 0.

The average condition on the pressure is (ph, 1)Ω = 0. Finally, the Dirichlet boundary condition

is imposed by setting û
L
h = û

p
h = uD on ∂Ω. To complete the definition of the DG method,

we only need to define the numerical traces νL̂hn− p̂hn, û
L
h and û

p
h.

6.1.2. The numerical traces. Taking advantage that the Laplacian operator acts on each
component of the velocity, the numerical traces L̂hn and û

L
h can be chosen by using, also in

a componentwise manner, any of the numerical traces for the DG method for steady-state
diffusion. The numerical traces p̂hn and û

p
h can be picked independently.

6.1.3. Energy identities. Taking (G, v, q) := (νLh,uh, ph) and adding the resulting equations,
we obtain the following local energy identity:

ν(Lh,Lh)K +ΘK = 〈νL̂hnK , ûL
h〉∂K − 〈p̂hnK , ûp

h〉∂K + (f,uh)K ,

where

ΘK := ΘL
K +Θp

K ,

ΘL
K := 〈ν(Lh − L̂h)nK ,uh − û

L
h〉∂K ,

Θp
K := −〈(ph − p̂h)nK ,uh − û

p
h〉∂K .

By adding on all the elements, we obtain the global energy identity

ν(Lh,Lh)Ω +Θh = 〈νL̂hn− p̂hn, ûD〉∂Ω + (f,uh)Ω,

where Θh :=
∑

K∈Th
ΘK . We now see that, if the numerical traces have to be defined so that

the term Θh is positive, it can be interpreted as the energy associated to the interelement
jumps.
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6.1.4. Residuals and jumps. Let us show that the method establishes a linear relation between
the residuals in the interior or the element K,

RG := Lh −∇uh, Rv := −ν∇ · Lh +∇ph − f, Rq := ∇ · uh,

and the residuals on its boundaries ∂K,

rG := û
L
h − uh, rv := ν(L̂h − Lh)nK − (p̂h − ph)nK , rq := (ûp

h − uh) · nK ,

Simple integration by parts in the three equations defining the DG methods give us that, for
all (G,v, q) ∈ G(K)×V(K)×Q(K), we have that

(RG,G)K = 〈rL,GnK〉∂K ,

(Rv,v)K = 〈rv,v〉∂K ,

(rq, q)K = 〈rq, q〉∂K .

This immediately implies that

‖PGRG‖K ≤ C h
−1/2
K ‖rG‖∂K ,

‖PVRv‖K ≤ C h
−1/2
K ‖rv‖∂K ,

‖PQRq‖K ≤ C h
−1/2
K ‖rq‖∂K ,

where PG, PV and PQ denote the L2(K)-projections into the spaces G(K), V(K) and Q(K),
respectively. We thus see that, whenever

∇V(K) ⊂ G(K), ∇ ·G(K) ⊂ V(K) and ∇ ·V(K) ⊂ Q(K),

the quality of the approximation only depends on the residuals on the boundaries and on
f− PVf.

6.1.5. An example. Let us consider the numerical traces proposed in Cockburn et al. (2002;
they use the numerical traces used for discretizing the Laplacian in Cockburn and Shu (1998a
and Castillo et al. (2000. Le us begin with the traces associated to the discretization of the
Laplacian. Inside the domain Ω, we take

L̂h := {Lh} − [[Lh]]⊗CLL − CLu [[uh]],

ûh := {uh} − [[uh]]Cuu − CuL[[Lh]],

where [[Lh]] := L+
h n

+ + L−
h n

− and [[uh]] := u+
h ⊗ n+ + u−

h ⊗ n−, and on its boundary, we take

L̂h := Lh − CLu(uh − uD)⊗ n

ûh := uD.

Now, let us consider the traces associated to the pressure and the discretization of the
divergence-free condition. On the interior faces, we take

p̂h := {ph}+Dpp · [[ph]] +Dpu[[uh,n]],

û
p
h := {uh}+Duu[[uh,n]] +Dup · [[ph]],
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where [[uh,n]] := u+
h · n+ + u−

h · n− and [[ph]] := p+h n
+ + p−h n

−, and on the boundary,

p̂h := ph +Dpu(uh − uD) · n,
û
p
h := uD.

In this case, a simple computation gives us that the global energy identity is

ν(Lh,Lh)Ω +Θh = 〈νL̂hn− p̂hn,uD〉∂Ω + (f,uh)Ω,

where

Θh = 〈CuL[[Lh]], [[Lh]]〉Fi
h
+ 〈CLu [[uh]], [[uh]]〉Fi

h
+ 〈CLu (uh − uD),uh − uD〉∂Ω

+ 〈Dup[[ph]], [[ph]]〉Fi
h
+ 〈Dpu [[uh,n]], [[uh,n]]〉Fi

h
+ 〈Dpu (uh − uD),uh − uD〉∂Ω,

whenever CLL + Cuu = 0 and Dpp + Duu = 0. We see that CuL, CLu, Cup and Cpu stabilize
the method.

Let us use the above global energy identity to obtain the existence and uniqueness of the
approximate solution in the case in which

(i) CuL, Dpu ≥ 0 on F i
h,

(ii) CLu, Dup > 0 on F i
h ∪ ∂Ω,

(iii) ∇V(K) ⊂ G(K) ∀K ∈ Th,
(iv) ∇Q(K) ⊂ V(K) ∀K ∈ Th.

Again, we only have to show that, when we set the data f and uD to zero, the only solution
is the trivial one. But in this case, the above energy identity gives that, by (i) and (ii), that
Lh = 0 on Ω, that [[uh]] = [[ph]] = 0 on F i

h, and that uh = 0 on ∂Ω. As a consequence, we have

that ûL
h = uh on F i

h ∪ ∂Ω, and the first equation defining the DG method reads

−(∇uh,G)K = 0

for all G ∈ G(K). By (iii) we can take G := ∇uh and conclude that uh is a constant vector
on the element K. Since uh = ûh on the interelement boundaries, uh is a vector constant on
Ω, and since uh = 0 on ∂Ω, we get that uh = 0 on Ω.

We still need to show that the approximate pressure is zero. Taking into account that the
interelement jumps of ph are zero, the second equation defining the DG method reads

(∇ph, v)K = 0,

for all v ∈ V(K). By property (iv), we can take v := ∇ph to conclude that ph is a constant on
the element K. Since ph is continuous on Ω and has average equal to zero, we conclude that
ph is also zero. This completes the proof.

6.2. DG methods allowing for an easy elimination of Lh

If we discretize each of the components of the Laplacian by using DG methods for the Laplacian
allowing for an easy elimination of the variable qh, we immediately obtain a DG method for
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which the velocity gradient Lh can be easily eliminated. As a consequence, we obtain methods
expressed in terms of the velocity uh and the pressure ph only. Examples of these methods
are the very first DG method proposed by Baker et al. (1990, which uses the IP method to
approximate the Laplacian, elementwise solenoidal velocities and a continuous approximation
of the pressure, the methods proposed by Cockburn et al. (2002 (for arbitrarily -shaped
elements) and Schötzau et al. (2003a (for square and cubic elements), which uses the LDG
method, and the method proposed by Girault et al. (2005 (for triangular elements), which
considers both the IP and the Baumann-Oden methods.

The convergence properties of these methods are as follows. When the velocities contain
the piecewise polynomials of degree k and the pressure (and velocity gradient) are piecewise
polynomials of degree k − 1, both the velocity and the pressure converge optimally (in
particular, with order k + 1 and k in L2-norms) for any k ≥ 1; for Girault et al. (2005 the
estimates hold for p = 1, 2, 3. The p-version of the methods is treated in Schötzau et al. (2003a
where optimal convergence properties are proven.

6.3. The HDG methods

The DG methods we just considered allow for an easy elimination of the approximation Lh

which gives rise to formulations in terms of uh and ph. Here, we consider DG methods which
allow for the elimination of Lh, uh and ph which results in formulations in terms of ûh and the
average of the pressure on each element ph only. This new formulation maintains the original
saddle- point structure of the problem for uh and ph, but has remarkably less globally-coupled
degrees of freedom, which provides an efficient implementation of the method. We follow
Cockburn and Shi (2014.

6.3.1. Definition. The HDG methods are obtained as a discrete version of the following
characterization of the exact solution. On the element k ∈ Th, given f |K , the constant p and
the Dirichlet boundary data û |∂K , we take (L,u, p) to be the solution of the following local
problem:

L = ∇u, −ν∇ · L +∇p = f, ∇ · u =
1

|K| 〈û · nK , 1〉∂K in K,

1

|K| (p, 1)K = p, û = uD on ∂K,

Then, the piecewise-constant function p and the single-valued velocity û is determined as
the solution of the global problem consisting the following transmission, divergence-free and
boundary and average conditions:

[[νL− pId]] = 0 on F i
h, 〈û · nK , 1〉∂K = 0 ∀K ∈ Th, û = ûD on ∂Ω, (p, 1)Ω = 0.

Here [[νL− pId]] := ν(L+n+ − L−n−)− (p+n+ + p−n−), with the obvious notation.

Let us note that the velocity u solving the local problems is not necessarily divergence-free
because we do not want to assume that the Dirichlet data û |∂K is such that 〈û · n, 1〉K = 0.
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We want these local problems to be solvable for any values of û |∂K . For this reason, we need
to introduce the second equation in the the definition of the global problem.

To obtain the HDG methods, we solve the local problem on each element K ∈ Th by
using a DG method. We solve the global problem by imposing the transmission, divergence-
free, boundary and beverage conditions weakly. So, for any given arbitrary function ûh |∂K
and constant ph, we define (Lh,uh, ph) ∈ G(K) ×V(K) × Q(K) as the solution of the local
problem for all (G,v, q) ∈ G(K)×V(K)×Q(K),

(Lh,G)K + (uh,∇ ·G)K − 〈ûh,Gn〉∂K = 0,

ν (Lh,∇v)K − (ph,∇ · v)K − 〈νL̂hn− p̂hn,v〉∂K = (f ,v)K ,

−(uh,∇q)K + 〈ûh · n, q〉∂K = 〈ûh · n, q〉∂K ,

(ph, 1)K = (ph, 1)K ,

νL̂hn− p̂hn := νLhn− phn− S(uh − ûh) on ∂K.

We take the function (ûh, ph) in the space Mh ×Q0
h, where,

Mh := {µ ∈ L2(Fh) : µ|F ∈ M(F ) ∀ F ∈ Fh},
Q0

h := {q ∈ L2(Th) : q|K is a constant ∀ K ∈ Th},
where the local space M(F ) is a general finite dimensional space, and determine it by requiring
that, for all (µ, q) ∈ Mh ×Q0

h,

〈−νL̂hn+ p̂h n,µ〉∂Th\∂Ω = 0,

〈ûh · n, q〉∂Th
= 0,

〈ûh,µ〉∂Ω = 〈g,µ〉∂Ω,
(ph, 1)Ω = 0.

Note, again, that (ûh, ph) is data of the local problem but the unknown of the global problem.
We need to solve the global problem in order to get the actual values of (ûh, ph). However,
we first need to solve the local problems to be able to construct the matrix equations of the
global problem. We show how to do that next.

6.3.2. The problem for (ûh, ph). We start by introducing notation related to the local
problems. On the element K ∈ Th, for any µ ∈ L2(∂K), we define (Lµ,Uµ,Pµ) ∈
G(K) × V(K) × Q(K) as the solution, for all (G,v, q) ∈ G(K) × V(K) × Q(K), of the
equations

(Lµ,G)K + (Uµ,∇ ·G)K − 〈µ,Gn〉∂K = 0,

ν (Lµ,∇v)K − (Pµ,∇ · v)K − 〈νL̂µn− P̂
µn,v〉∂K = 0,

−(Uµ,∇q)K + 〈µ · n, q〉∂K = 〈µ · n, q〉∂K ,

(Pµ, 1)K = 0,

νL̂µn− P̂
µn := νLµn− P

µn− S(Uµ − µ) on ∂K.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Similarly, for any f ∈ L2(K), we define (Lf ,Uf ,Pf ) ∈ G(K)×V(K)×Q(K) as the solution,
for all (G,v, q) ∈ G(K)×V(K)×Q(K), the equations

(Lf ,G)K + (Uf ,∇ ·G)K = 0,

ν (Lf ,∇v)K − (Pf ,∇ · v)K − 〈νL̂ fn− P̂
fn,v〉∂K = (f ,v)K ,

−(Uf ,∇q)K = 0,

(Pf , 1)K = 0,

νL̂ fn− P̂
fn := νLfn− P

fn− S(Uf ) on ∂K.

With this notation, we can write that

(Lh,uh, ph) = (Lûh ,Uûh ,Pûh) + (Lf,Uf,Pf) + (0,0, ph),

where (ûh, ph) is the solution of the global problem. The next result, by Nguyen et al. (2010b,
gives a characterization of this function. Therein, we use the following notation:

Mh(g) := {µ ∈ Mh : 〈µ,λ〉∂Ω = 〈g,λ〉∂Ω ∀λ ∈ Mh}.

Theorem 5 (Characterization of (ûh, ph)) Assume that

(i) S|F is symmetric and uniformly positive definite ∀F ∈ Fh,

(ii) ∇V(K) ⊂ G(K) ∀K ∈ Th,
(iii) ∇Q(K) ⊂ V(K) ∀K ∈ Th.

The function (ûh, ph) is the element in Mh(uD)×Q0
h satisfying

ah(ûh,µ) + bh(µ, ph) =(f,uµ
h )Th

∀µ ∈ Mh(0),

−bh(ûh, q) =0 ∀q ∈ Q0
h,

(ph, 1)Ω =0,

where ah(λ,µ) := 〈νL̂µ
h n− p̂µ

h n,λ〉∂Th
and bh(λ, q) := −〈q,λ · n〉∂Th

. Moreover,

ah(λ,µ) = ν (Lλ
h ,L

µ
h )Th

+ 〈S(uλ
h − λ), (uµ

h − µ)〉∂Th
,

for all λ, µ in Mh, and ah(·, ·) is symmetric and positive definite in Mh(0)×Mh(0).

This implies that, as claimed, the HDG methods can be easily implemented. Indeed, we see
that the only globally coupled degrees of freedom are those of the approximation of the velocity
on Fh, ûh, and those of the elementwise average of the pressure ph. This global problem can
be solved by using, for example, the augmented Lagrangian method, see Nguyen et al. (2010b.
Once this global problem is solved, the approximate solution (Lh,uh, ph) can be easily obtained
in an element-by-element fashion by using the very first identity of this Subsection.

This also implies that we can see ûh as the only minimum of the functional

Jh(λ) :=
1

2
ah(λ,λ)− (f,uλ

h)Th
,
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on the space D := {µ ∈ Mh(g) : bh(λ, q) = 0 ∀ q ∈ Qh}. Note that a related method
can be obtained by dropping the restriction that λ lie on the space D, by requiring that the
approximate velocities be divergence-free on each element and by penalizing their interelement
normal jump. This was originally proposed by Hansbo and Larson (2008 for a DG method
defined by means of an IP discretization. This approach was then applied to a DG method
proposed in Montlaur et al. (2008 which uses globally divergence-free velocities. The resulting
method turned out to be identical to the DG method proposed by Hansbo and Larson (2008.

6.3.3. The numerical traces. Let us give an idea of the explicit form of the numerical traces
of the HDG methods in the simple case in which the stabilization tensor is just a constant
time the identity, that is, S := τ Id where τ is taken to be constant on each face. Then, when
the local spaces are taken in such a way that the transmission condition implies

[[−νL̂hn+ p̂hn]] = 0 on F i
h,

a simple computation gives us that the numerical traces must given by the following formulas:

ûh =
τ+uh

+ + τ−uh
−

τ+ + τ−
+

1

τ+ + τ−
[[−νLh + phId]],

−νL̂h + p̂hId =
τ−

τ+ + τ−
(−νL+

h + p+h Id)

+
τ+

τ+ + τ−
(−νL−

h + p−h Id) +
τ+τ−

τ+ + τ−
[[uh]].

Note that for this HDG method, we have that ûL
h = û

p
h = ûh and so, it is impossible to relate it

to any of the DG methods previously considered. We can, however, compare the stabilization
term which in this case is

Θh =
∑

K∈Th

〈((νLh − phId)− (νL̂h − p̂hId))nK ,uh − ûh〉∂K

=
∑

K∈Th

〈τ(uh − ûh),uh − ûh〉∂K

= 〈 1

τ+ + τ−
[[νLh − phId]], [[νLh − phId]]〉Fi

h

+ 〈 τ+τ−

τ+ + τ−
[[uh]], [[uh]]〉Fi

h
+ 〈τ(uh − uD), (uh − uD)〉∂Ω.

We thus see that the stabilization of the HDG methods is through the interelement jumps of
uh and those of the normal component of νLh − phId.

6.3.4. Convergence properties. Consider meshes Th is a regular-shaped elements polygonal
or polyhedral element K. For the HDG methods with the local spaces

G(K) = Pk(K), V (K) = Pk(K), Q(K) = Pk(K), M(F ) = Pk(F ).

and the stabilization function S = τ Id, it was proven in Cockburn and Shi (2014 that, when τ
is a positive constant, the order of convergence for the velocity is k+1 but those for the pressure
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and the velocity gradient are only k+1/2 (The same orders hold if we take G(K) = ∇Pk(K)).
Whenever τ = 1/h, then the order of convergence for the velocity is k + 1 but those for the
pressure and the velocity gradient are only k. The same orders hold if we take G(K) = Pk−1(K)
and Q(K) = Pk−1(K). In this case, the orders are optimal.

6.3.5. Superconvergent HDG methods. It is possible to devise superconvergent HDG
methods for the Stokes flow in terms superconvergent HDG methods for the model diffusion
problem previously considered. Suppose that the local spaces of the latter methods are
V D(K), WD(K) and MD(F ), and that their stabilization function is τD. We construct a
superconvergent HDG method as follows.

Denote by Gi(K) the space of all the i-th rows of functions in G(K), and by V i(K) and
M i(F ) the space of the i-th component of functions in V (K) and M(F ), respectively, for
i = 1, . . . , d. Then, we take the local spaces as

Gi(K) := V D(K), V i(K) := WD(K), M i(F ) := MD(F ), (8a)

for i = 1, . . . , d, and the stabilization function as

S := τD Id. (8b)

The choice of the space for the pressure Q(K) has to be done in such a way that

d∑

j=1

∂jW
D(K) ⊂ Q(K) ⊂ ∩d

j=1{vj : v ∈ V D(K) : vi = 0 for i 6= j}. (8c)

Examples of such methods are displayed in Table 11, taken from Cockburn et al. (2012a. We
display the orders of convergence for mixed methods (τD = 0) and HDG methods (τD = 1)
using different elements K. We only show the space for the pressure Q(K); the the other spaces
are explicitly given in Cockburn et al. (2012a. The new approximation of the velocity u∗

h on
the element K ∈ Th is defined, see Gastaldi and Nochetto (1989; Stenberg (1988; Stenberg
(1991, as the element of finite dimensional space V ∗(K) such that

(∇u∗
h,∇v)K = (Lh,∇v)K ∀v ∈ V ∗(K), (9a)

(u∗
h,v)K = (uh,v)K ∀ ∈ P0(K). (9b)

In the examples in Table 11, it is enough to take V ∗
h(K) ⊃ Pk+1(K) for all elements K ∈ Th.

The application of the theory of M-decompositions to devise superconvergent HDG and
mixed methods has been developed in Cockburn et al. (2016a. Examples of other methods are
the staggered DG method obtained by Kim et al. (2013, which is related to the SFH method,
as pointed out by Chung et al. (2016, and the method proposed by Oikawa (2016, which is
related to the reduced-order HDG method analyzed in Oikawa (2015.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Table 11. Order of convergence for superconvergent HDG methods (k ≥ 1)

Q(K) ‖L− Lh‖L2(Ω) ‖p− ph‖L2(Ω) ‖u− u⋆
h
‖L2(Ω)

K simplex and M(F ) = P k(F )

BDFMk+1 Pk(K) k + 1 k + 1 k + 2
RTk Pk(K) k + 1 k + 1 k + 2

HDGk Pk(K) k + 1 k + 1 k + 2
BDMk

k≥2
Pk(K) k + 1 k + 1 k + 2

K square or cube and M(F ) = P k(F )

BDFM[k+1] Pk(K) k + 1 k + 1 k + 2

HDG
P
[k] Pk(K) k + 1 k + 1 k + 2

BDM[k]
k≥2

Pk(K) k + 1 k + 1 k + 2

K square or cube and M(F ) = Qk(F )

RT[k] Qk(K) k + 1 k + 1 k + 2
TNT[k] Qk(K) k + 1 k + 1 k + 2

HDG
Q

[k]
Qk(K) k + 1 k + 1 k + 2

6.4. Obtaining divergence-free approximate velocities

6.4.1. Using H(div,Ω)-conforming velocity spaces. A very simple way to obtain divergence-
free approximate velocities, see Cockburn et al. (2005; Cockburn et al. (2007, is to pick the
velocity space in such a way that

(i) ∇ ·V(K) ⊂ Q(K) ∀K ∈ Th,
(ii) V(K) ⊂ H(div,Ω),

and set

ûh · nK := uh · nK on ∂K ∀K ∈ Th.

Indeed, in the case, the third equation defining the DG method reads, after a simple integration
by parts,

(∇ · uh, q)K = 0

for all q ∈ Q(K). By property (i) and the choice of the normal component of the numerical
trace, this implies that we can take q := ∇ ·uh to conclude that ∇ ·uh = 0 on the element K.
By property (ii), this implies that uh is a divergence-free function in H(div,Ω).

In Cockburn and Sayas (2014, a new approach was proposed to devising HDG methods with
H(div)-conforming velocity spaces which are also superconvergent. It consists in considering
the superconvergent HDGk method in Table 11 with the following stabilization function

S := ν τn n⊗ n+ ν τt (Id− n⊗ n),
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where n is the normal to the faces on ∂Th, and let τn go to infinity. In Cockburn and Sayas
(2014, it was proven that, when τn goes to infinity, we obtain a well defined method with the
very same convergence and superconvegence properties of the original method HDGk.

6.4.2. Divergence-free velocities by local postprocessing. An alternative to the previous
approach is to postprocess the approximation to obtain the wanted H(div,Ω)-conforming,
divergence-free approximate velocity; see Bastian and Rivière (2003; Cockburn et al. (2005;
A. Ern and Vohraĺık (2007. For example, let us assume that all the elements K are tetrahedra.
Then, on the tetrahedron K ∈ Th, the postprocessed velocity u∗

h is defined as the element of
Pk(K) such that

〈(u∗
h − ûh) · n, µ〉F = 0 ∀ µ ∈ Pk−1(F ),

for all faces F of K, and such that

(u∗
h − uh,∇w)K = 0 ∀ w ∈ Pk−1(K),

(∇× u∗
h −wh, (∇× v) BK)K = 0 ∀ v ∈ Sk−1(K)

where BK is the so-called symmetric bubble matrix introduced in Cockburn et al. (2010b,
namely,

BK :=

3∑

ℓ=0

λℓ−3λℓ−2λℓ−1∇λℓ ⊗∇λℓ,

where λi are the barycentric coordinates associated with the tetrahedron K, the subindices
being counted modulo 4. Finally, Sk−1(K) :=

∑k−1
ℓ=1 Sℓ(K) where Sℓ is the space of vector-

valued homogeneous polynomials v of degree ℓ such that v ·x = 0, see Nédélec (1980; Nédélec
(1986.

The fact that u∗
h is well defined follows from the projection of the so-called BDMmethod. The

fact that u∗
h lies in H(div,Ω) is a consequence of the first equation defining the postprocessing

and from the fact that ûh is single valued. Finally, the fact that the divergence of u∗
h is zero

follows from the third equation defining the approximation. Indeed, we have, for all Q ∈ Q(K),

(∇ · u∗
h, q)K =− (u∗

h,∇q)K + 〈u∗
h · nK , q〉∂K

=− (uh,∇q)K + 〈ûh · nK , q〉∂K
= 0.

It is not difficult to show that this new approximation to the velocity has the same convergence
properties than the original approximation, that is,

‖u− u∗
h‖L2(Ω) ≤ C hk+1,

when the exact solution is smooth enough and whenever k ≥ 1.

6.4.3. Divergence-free superconvergent velocities by local postprocessing. The following
postprocessing was introduced in Cockburn et al. (2011 and, in three-space dimensions, is
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defined as follows. On the tetrahedron K ∈ Th, u∗
h is defined as the element of Pk+1(K) such

that

〈(u∗
h − ûh) · n, µ〉F = 0 ∀ µ ∈ Pk(F ), (10a)

〈(n×∇)(u∗
h · n)− n× ({Lt

h}n), (n×∇)µ〉F = 0 ∀ µ ∈ Pk+1(F )⊥, (10b)

for all faces F of K, and such that

(u∗
h − uh,∇w)K = 0 ∀ w ∈ Pk(K), (10c)

(∇× u
∗
h − wh, (∇× v) BK)K = 0 ∀ v ∈ Sk(K). (10d)

Here
Pk+1(F )⊥ := {µ ∈ Pk+1(F ) : 〈µ, µ̃〉F = 0, ∀µ̃ ∈ Pk(F )},

the operator n×∇ is the tangential gradient and the function {Lt
h} is the single-valued function

on Eh equal to ((Lt
h)

+ + (Lt
h)

−)/2 on the set Eh \ ∂Ω and equal to Lt
h on ∂Ω. Moreover,

wh := (L32h − L23h,L13h − L31h,L21h − L12h)

is the approximation to the vorticity. This elementwise post-processing has many properties
we gather in the following result.

The fact that u∗
h is well defined and that it is a divergence-free function in H(div,Ω) can be

proven exactly as in the previous case. In Cockburn et al. (2011, it has been shown that we
also have

‖u− u∗
h‖L2(Ω) ≤ C hk+2,

when the exact solution is smooth enough and whenever k ≥ 1.

6.4.4. Using H(div,Ω)-conforming divergence-free velocity spaces. It is very well known that
the construction of finite dimensional spaces of divergence-free velocities functions is, in
practice, impossible due to the many inter-element continuity constraints that need to be
imposed; see Thomasset (1981; Hecht (1981; Scott and Vogelius (1985. This difficulty can
completely be bypassed by a simple technique called hybridization. Roughly speaking, it
consists two steps. In the first step, we remove the continuity constraints of the interelement
normal component of the space of velocities. In this way, the new space of velocities is
completely discontinuous across elements. In the second step, we restore the above interelement
constraints, but only for the approximation of the velocity. In this manner, only locally
divergence-free approximations need to be constructed. The technique was introduced in
Carrero et al. (2006 for DG methods and then in Cockburn and Gopalakrishnan (2005a;
Cockburn and Gopalakrishnan (2005b for a classical mixed method. See also the reviews
Cockburn and Gopalakrishnan (2005c; Cockburn (2009. This hybridization technique coincides
with the way in which the HDG methods are devised. Thus, HDG methods using divergence-
free, globally divergence-free velocities are very easy to define.

6.5. Extensions

Although we have used a velocity gradient-velocity-pressure formulation of the Stokes system,
we could have used others using, for example, the symmetric gradient of the velocity or the
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vorticity instead of the velocity gradient. Numerical experiments carried out in Nguyen et al.
(2010a for the HDG method show that the formulation using the velocity gradient is superior
to that of the symmetric gradient which in turn is better than that of the vorticity; see
also Cockburn and Cui (2012a; Cockburn and Cui (2012b. The use of the velocity gradient
formulation does not allow in a natural way the imposition of the normal stress as a boundary
condition. This problem has been partially addressed in Nguyen et al. (2011, but although the
optimal convergence of all the variables was retained, the superconvergence of the velocity is
lost.

In defining the HDG methods, we have used as data of the local problems the velocity at the
boundary and the average on the pressure in the element. However, this is certainly not the
only way to define the local problems. For example, an HDG method based on the vorticty
formulation was studied in Cockburn and Gopalakrishnan (2009. The very same method can
be obtained in four different ways according to what are the data of the local problems. Each
of these ways can be thought as a different way of implementing the method.

7. Convection-dominated Problems

In this section, we consider the application of the DG method to various problems in fluid
dynamics in which convection plays a dominant role. We start with the convection-diffusion
and the shallow water equations. We then consider the equations of incompressible and
compressible fluid flow. To obtain the DG methods, we simply have to combine the DG
discretization techniques for the equations for the corresponding purely hyperbolic problems
with those of the purely elliptic equations. Since the discretizations are straightforward, we
only discuss important features of the discretization not previously considered.

7.1. Convection-diffusion problems

In this section, we consider the LDG methods for the following convection-diffusion model
problem

ut +∇ · ( f(u)− a(u)∇u) = 0 in Ω× (0, T )

u(x, 0) = u0(x) ∀x ∈ Ω

To define a DG method, we first notice that, since the matrix a(u) is assumed to be symmetric
and semipositive definite, there exists a symmetric matrix b(u) such that a = b2. This allows
us to introduce the auxiliary variable q = b∇u, and rewrite the model problem as follows:

ut +∇ · f(u)−∇ · (b(u)q) = 0 in Ω× (0, T )

qi = ∇ · gi(u) in Ω× (0, T ), 1 ≤ i ≤ N

u(x, 0) = u0(x) ∀ x ∈ Ω

where qi is the i−th component of the vector q, and gi(u) is the vector whose jth component
is
∫ u

bji(s)ds. A DG method is now obtained in a most straightforward way. For details, see
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Cockburn and Shu (1998a and Cockburn and Dawson (2000.

Let us give a computational result of the application of the LDG method to the two-
dimensional flow and transport in shallow water from the paper by Aizinger and Dawson
(2003; see also Dawson and Proft (2002; Dawson and Proft (2003; Dawson and Proft (2004.
The system of shallow water equations can be written as

ct +∇ · (A+ (D∇)c) = h(c)

where ct = (ξ, u, v); here, ξ is the deflection of the air-water interface from the mean sea level,
and (u, v) is the depth-averaged horizontal velocity. For details about the remaining terms, see
Aizinger and Dawson (2003. What is relevant for our purposes is that the above is a nonlinear
convection-diffusion-reaction equation which can be easily discretized by the LDG method.
In Figure 33, we see a mesh (top) of 14 269 triangles, highly graded towards the coast, and
the function ξ (bottom) computed for a high inflow of 35 000m3 s−1 for the Mississippi River;
an open sea boundary condition is assumed. In comparison with the no-inflow situation (not
shown here), the elevation increases about half a foot near the lower Louisiana coast.

A posteriori error estimates have been obtained, for example, by Baccouch and Adjerid
(2015. Error estimates of LDG methods using implicit-explicit time-marching schemes was
carried out by Wang et al. (2015; Wang et al. (2016.

The definition of HDG methods for steady-state convection-diffusion problems is
straightforward. For details, see Cockburn et al. (2009a and Nguyen et al. (2009a, where
linear convection was considered, and Nguyen et al. (2009b, where nonlinear convection
was treated. When the diffusion dominates, the convergence properties of the methods are
those of the purely diffusive case whereas when the convection dominates. In particular, the
superconvergence of scalar variable can be recovered. When convection dominates, the method
behaves like the original DG method as shown by Fu et al. (2015. See also Egger and Schöberl
(2010, where a mixed method is used to approximate the second-order elliptic term. An space-
time HDG method for the advection-diffusion equation on moving and deforming meshes was
proposed by Rhebergen and Cockburn (2013.

7.2. Oseen flow

Next, let us consider the Oseen equations of incompressible fluid flow, namely,

−ν∆u+ (w · ∇)u+ γ u+∇p = f in Ω

∇ · u = 0 in Ω

u = g on Γ

where u is the velocity, p the pressure, f ∈ L2(Ω)2 a prescribed external body force, ν > 0
the kinematic viscosity, w a convective velocity field and γ a given scalar function. As usual,
we take Ω to be a bounded domain of R2 with boundary Γ = ∂Ω, and the Dirichlet datum
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Figure 33. Gulf of Mexico mesh (a) and surface elevation for high inflow of the Mississippi river (b).
(From Aizinger V and Dawson CN. A Discontinuous Galerkin Method for Two-Dimensional Flow and

Transport in Shallow Water. Technical Report 03-16, TICAM, 2003.)

g ∈ H1/2(Γ)2 to satisfy the compatibility condition
∫
Γ
g · nds = 0, where n denotes the unit

outward normal vector to Γ. We also assume that

γ(x)− 1
2∇ ·w(x) =: γ0(x) ≥ 0, x ∈ Ω (11)

This condition guarantees the existence and uniqueness of a solution (u, p) ∈ H1
g (Ω)

2 ×L2
0(Ω)

where H1
g (Ω)

2 := {u ∈ H1(Ω)2 : u|Γ = g} and L2
0(Ω) := {p ∈ L2(Ω) :

∫
Ω
pdx = 0}.

In Figure 34, we display the norms of the error in the velocity and the pressure for the
LDG method as a function of the mesh size for several Reynolds numbers for the so-called
Kovasznay flow. Bi-quadratic approximations on squares are used. The norms are scaled with
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Figure 34. Scaled L2-errors in u and p with bilinear approximations for different Reynolds numbers.
(From Cockburn B, Kanschat G and Schötzau D. Local discontinuous Galerkin methods for the Oseen

equations. Math. Comput. 2004; 73:569-593.)

the appropriate powers of ν so as the make all the quantities dimensionally equivalent - see
Cockburn et al. (2004 for details. We can see that the convergence of the above errors is not
altered as the Reynolds number varies from 1 to 1000 which confirms the expected robustness
of the LDG method with respect to an increase in the strength of the convection.
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7.3. The Navier-Stokes of equations incompressible flow

Here, we consider DG methods for the stationary incompressible Navier-Stokes equations

L−∇u = 0 in Ω,

−ν∇ · L +∇ · (u⊗ u) +∇p = f in Ω,

∇ · u = 0 in Ω,

(p, 1)Ω = 0,

u = uD on ∂Ω,

where 〈uD · n, 1〉∂Ω = 0. Since the only difference with the Oseen equations is the nonlinear
convective term, we restrict our discussion to the DG discretization of such a term. The
emphasis will be placed on how to obtain (provable) H1-bounded DG methods which are also
locally conservative.

7.3.1. H1-boundedness, local conservativity and incompressibility. Témam (1966; Témam
(1968, see also Témam (1979, proposed a way to discretize the nonlinear convective term
of the Navier-Stokes equations, ∇ · (u ⊗ u). It consists in replacing the convective nonlinear
term by the term

∇ · (u⊗ u)− 1

2
(∇ · u)u.

This approach became the approach of choice in the finite element literature because it allowed
to obtain the H1-boundedness of the approximate velocity without requiring that it be exactly
divergence free. The first DG method for the Navier-Stokes equations proposed by Karakashian
and Jureidini (1998, which also uses divergence-free polynomial approximations of the velocity
inside each element, and the method proposed by Girault et al. (2005 use this classic approach.
The only drawback is that, unlike all other DG methods, these methods cannot achieve local
conservativity because the above nonlinear term does not have divergence form.

As pointed out by Cockburn et al. (2005, this difficulty can be overcome by simply replacing
the pressure p by the new unknown P := p − 1

2 |u|2. Indeed, in this case the nonlinear term,
namely,

∇ · (u⊗ u) +
1

2
∇|u|2

is in divergence form. Hence, locally conservative (and H1-bounded) DG methods can be
obtained. The drawback is, however, that the new unknown P does not have a clear physical
interpretation.

Yet another possibility to achieve H1-boundedness and local conservativity is to rewrite the
Navier-Stokes equations as the Oseen problem

−ν∆u+ (w · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,
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where w = u. It is known that, for f small enough, the sequence sequence {un}n∈N, where
un+1 is the solution of the above Oseen problem with w = un. The limit is thus a solution of
the Navier-Stokes equations. Thus, at the discrete level, the idea is to use an approximation
for u and another for w which should be globally divergence free. This can be achieved by an
elementwise postprocessing as pointed out in the previous section. The resulting method is
both H1-bounded and local conservative.

7.3.2. Examples. DG methods for the Navier-Stokes can be obtained by combining a DG
method for the Stokes system with an approximation of the nonlinear convective terms. The
corresponding convergence properties are usually identical. Recall that to define a DG method
for the Stokes system, it is enough to choose a DG method for a scalar second-order elliptic
problem (to discretize the terms associated to the viscosity) and to choose to weakly or strongly
impose the divergence-free condition. Let us give some examples:

• The DG method by Karakashian and Jureidini (1998; Karakashian and Katsaounis (2000
extend the IP method DG method by Baker et al. (1990 using locally divergence-free velocities.
It approximates the nonlinear terms by using Témam’s approach. Similarly, the main DG
method proposed by Girault et al. (2005 extends the IP method and also approximates the
nonlinear terms by using Témam’s approach.

• The method by Crivellini et al. (2013 is an extension of the DG method by Bassi et al.
(2006.

• The hybrid method by Montlaur et al. (2010 extends the hybrid method by Montlaur et al.
(2008; since it uses exactly divergence-free velocities, it can discretize directly the nonlinear
term ∇ · (u⊗ u).

• The LDG methods by Cockburn et al. (2005; Cockburn et al. (2007; Cockburn et al. (2009d
extend the LDG methods by Cockburn et al. (2002 and use the last of the above-mentioned
approaches to discretize the nonlinearity. Similarly, the LDG method by Schötzau et al. (2003a
extends the LDG method in Schötzau et al. (2003b.

• The so-called Galerkin interface stabilisation (GIS) method Labeur and Wells (2007;
Labeur and Wells (2012 does not quite fit the general form of the HDG methods considered
here. It is is, in part, an extension of the multiscale DG method by Bochev et al. (2006;
Hughes et al. (2006; Buffa et al. (2006. It approximates the nonlinear convective term by
directly discretizing the term

∇ · (u⊗ u)− (1− χ)(∇ · u)u,

where χ ∈ [0, 1]. Interestingly enough, the method is actually H1-bounded even though its
approximate velocities are not exactly divergence free. If the trace spaces are continuous, the
numerical traces of the method are no longer single-valued, as is typical of the multiscale DG
method.

• The superconvergent HDG method by Nguyen et al. (2010c; Nguyen et al. (2011 extends
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the superconvergent HDG method for Stokes by Nguyen et al. (2010b also by using last of the
above-mentioned approaches to discretize the nonlinearity. (An HDG method was proposed
and analyzed by Cesmelioglu et al. (2013.) Space-time HDG methods were considered in
Rhebergen and Cockburn (2012; Rhebergen et al. (2013.

• The HDG method by Lehrenfeld and Schöberl (2015 extends the method using the
Lehrenfeld-Schöberl stabilization function introduced by Lehrenfeld (2010; since it uses exactly
divergence-free velocities, it can discretize directly the nonlinear term ∇ · (u⊗ u).

• The staggered DG method by Cheung et al. (2015 extends the corresponding method for
the Stokes system by Kim et al. (2013. It employs an exactly divergence-free approximation
of the velocity but its discretization of the nonlinear convection does not quite fit our general
framework.

7.4. The compressible Navier-Stokes equations of fluid flow

To end this section, we consider the compressible Navier-Stokes equations:

̺t + (̺ vj),j = 0

(̺ vi)t + (̺ vi vj − σij),j = fi

(̺ e)t + (̺ e vj − σij vi + qi),j = fi vi

where ̺ is the density, v the velocity, e the internal energy, and f the external body forces.
The viscous stress σ and the heat flux q are given by

σij = (−p+ λ vi,i) δij + µ (vi,j + vj,i)

qi = −κT,i

where p is the pressure and T the temperature.

To obtain a DG method, we first rewrite the equations as

q−∇u = 0 in Ω× (0, T ),
∂tu+∇ · (F(u) +G(u, q)) = 0 in Ω× (0, T ),

where G(u, q) are the viscous fluxes. We then can use a space-time, or a semidiscrete DG
discretization of these equations by properly choosing the convective fluxes and the viscous
fluxes as sketched in the previous sections. A suitable time-marching scheme has then to be
applied to the semidiscretization. For example, see the high-order accurate implicit Runge-
Kutta methods in Montlaur et al. (2011.

7.4.1. Examples of DG methods. There are many DG methods for the compressible Navier-
Stokes equations. Let us mention a few to give an idea.

The first DG method for the compressible Navier-Stokes equations was proposed by Bassi
and Rebay (1997a. Based on the work by Bassi and Rebay (1997a and by Cockburn and
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Shu (1998a, a DG method for the compressible Navier-Stokes equations was proposed by
Lomtev and Karniadakis (1999. A DG method based on the IP discretization of the second-
order operators was proposed by Hartmann and Houston (2002b. A space-Time Discontinuous
Galerkin method for the compressible Navier-Stokes were proposed by Klaij et al. (2006. The
compact discontinuous Galerkin method Peraire and Persson (2008 has also been applied to
compressible viscous flows Persson and Peraire (2008 and turbulent flows Nguyen et al. (2007.
More recently, an HDG methods was developed by Peraire et al. (2010. Its EDG version
was explored in Nguyen et al. (2015. A hybrid mixed method for the compressible Navier-
Stokes equations was proposed by Schütz and May (2013. Adjoint-based error estimation and
mesh adaptation using HDG methods were explored by Woopen et al. (2014. A high-order
discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible
flows was explored by Gerhard et al. (2015.

For time-marching methods for DG methods for compressible flow, see Nigro et al. (2014a;
Nigro et al. (2014b; Bassi et al. (2015. For implicit high-order DG methods DNS and implicit
LES of turbulent flows see Bassi et al. (2016.

Domain decomposition preconditioners have been explored by Giani and Houston (2014.
And p-multigrid discontinuous Galerkin solver in Ghidoni et al. (2014.

7.4.2. Some numerical examples. We present some numerical experiments obtained by using
the LDG method developed by Lomtev and Karniadakis (1999. We present some numerical
results for the compressible Navier-Stokes equations, In Figure 35, we show a steady state
calculation of the laminar Mach 0.8 flow around a NACA 0012 airfoil with Reynolds number
73. No limiter was applied.

Another example is a time-dependent computation of the flow around a cylinder in two space
dimensions. The Reynolds number is 10 000 and the Mach number 0.2. In Figure 36, we see
the detail of a mesh of 680 triangles (with curved sides fitting the cylinder) and polynomials
whose degree could vary from element to element; the maximum degree was 5. Note how the
method is able to capture the shear layer instability observed experimentally.

We end by presenting the application of the HDG method by Peraire et al. (2010 to the
Reynolds-averaged Navier-Stokes equations, see Spalart and Allmaras (1994, in Figure 7.4.2.
We also show its application to the Euler equations in Figure 7.4.2.

8. Concluding remarks and bibliographic notes

Most of the material in this article has been taken from the monograph by Cockburn (1999,
from the reviews by Cockburn and Shu (2001; Cockburn (2003; Cockburn and Shi (2014 and
from the short essay by Cockburn (2015. The references do not pretend to be exhaustive.
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Figure 35. Pressure (a) and drag (b) coefficient distributions. The squares were obtained by using
polynomials of degree 3 by Bassi F and Rebay S. A high-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys.
1997a; 131:267-279; and the crosses by using polynomials of degree 6 by Lomtev I and Karniadakis GE.
A discontinuous Galerkin method for the Navier-Stokes equations. Int. J. Numer. Methods Fluids 1999;

29:587-603.
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Figure 36. Flow around a cylinder with Reynolds number 10 000 and Mach number 0.2. Detail of the
mesh (a) and density (b) around the cylinder. (From Lomtev I and Karniadakis GE. A discontinuous
Galerkin method for the Navier-Stokes equations. Int. J. Numer. Methods Fluids 1999; 29:587-603.)
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Figure 37. Reynolds-averaged Navier-Stokes equations over the NACA 0012 airfoil at Mach number
0.3, Reynolds number 1.85 millions, and 0 angle of attack. Mach number contour plot provided by the

HDG method with k = 4. Courtesy of Ngoc-Cuong Nguyen.

Figure 38. Euler equations over the Trefftz airfoil at Mach number 0.2 and 0 angle of attack. Pressure
contour plot provided by the EDG method with k = 4. Courtesy of Ngoc-Cuong Nguyen.
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For a history of the development of DG methods up to 1999, see Cockburn et al. (2000.
For a theory of DG methods for Friedrichs’ systems, see Ern and Guermond (2006a; Ern
and Guermond (2006b; Ern and Guermond (2008; see also a systematic way of picking the
corresponding numerical traces by Bui-Thanh (2015. See also the reviews by Cheng and Shu
(2013; Shu (2014 and the monograph by Shu (2009. For books on DG methods, see Di-Pietro
and Ern (2012, Hesthaven and Warburton (2008, Kanschat (2008, Li (2006, and Rivière (2008.

9. Related Chapters

(See also Finite Element Methods, Finite Volume Methods: Foundation and Analysis;
Multiscale and Stabilized Methods)
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Methods for the Simulation of Rotating Electrical Machines. COMPEL, 20:448–462.

P. F. Antonietta, S. Giani and P. Houston (2014). Domain decomposition preconditioners for
discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci.
Comput., 60(1):203–227.

D. N. Arnold (1982). An interior penalty finite element method with discontinuous elements.
SIAM J. Numer. Anal., 19:742–760.

D. N. Arnold and F. Brezzi (1985). Mixed and nonconforming finite element methods:
implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér.,
19:7–32.

D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini (2002). Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749–1779.

H.L. Atkins and C.-W. Shu (1998). Quadrature-free implementation of discontinuous Galerkin
methods for hyperbolic equations. AIAA Journal, 36.
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J. Schütz and G. May (2013). A hybrid mixed method for the compressible Navier-Stokes
equations. J. Comput. Phys., 240:58–75.

L. R. Scott and M. Vogelius (1985). Norm estimates for a maximal right inverse of the
divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal.
Numér., 19:111–143.

S.J. Sherwin (2000). Dispersion analysis of the continuous and discontinuous Galerkin
formulations. In Cockburn, B., Karniadakis, G., and Shu, C.-W., editors, Discontinuous
Galerkin Methods. Theory, Computation and Applications, volume 11 of Lect. Notes
Comput. Sci. Engrg., pages 425–431, Berlin. Springer Verlag.

A.I. Shestakov, J.L. Milovich and M.K. Prasad (2001). Combining cell- and point-centered
methods in 3D, unstructured-grid hydrodynamics codes. J. Comput. Phys., 170:81–111.

A.I. Shestakov, M.K. Prasad, J.L. Milovich, N.A. Gentile, J.F. Painter and G. Furnish (2000).
The radition-hydrodynamic ICF3D code. Comput. Methods Appl. Mech. Engrg., 187:181–.

C.-W. Shu (1988). TVD time discretizations. SIAM J. Sci. Stat. Comput., 9:1073–1084.

C.-W. Shu (2009). Discontinuous Galerkin methods: general approach and stability. In
Numerical solutions of partial differential equations, Adv. Courses Math. CRM Barcelona,
pages 149–201. Birkhäuser, Basel.
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